1 Purpose

To calculate electron-impact ionization cross sections for gas species found in the "After 2 Days" residual gas analyzer (RGA) spectrum taken on 5/21/18. The spectrum was analyzed using gnuplot and is shown below in Figure 1. Each substantial peak was identified and fit with a Gaussian function in order to determine the partial pressures of the various species of residual gas in the gun chamber. NOTE: The peak values must be divided by the correction factors listed here: https://www.mksinst.com/docs/ur/GaugeGasCorrection.aspx

Figure 1: Analysis of the RGA spectrum for the "After 2 Days" data (before correction factor)

2 Calculation of the Ionization Cross Section

The equation for the calculation of the ionization cross section σ_i of the i^{th} gas species can be found in Reiser [1] and was originally developed by Slinker et. al. [4]:

$$\sigma_{i} = \frac{8a_{0}^{2}\pi I_{R}A_{1}}{m_{e}c^{2}\beta^{2}}f(\beta)\left(\ln\frac{2A_{2}m_{e}c^{2}\beta^{2}\gamma^{2}}{I_{R}} - \beta^{2}\right)$$
(1)

Numerically, this can be rewritten as:

$$\sigma_{i[m^2]} = \frac{1.872 \times 10^{-24} A_1}{\beta^2} f(\beta) \left[\ln \left(7.515 \times 10^4 A_2 \beta^2 \gamma^2 \right) - \beta^2 \right]$$
 (2)

In these two equations, $a_0 = 5.29 \times 10^{-11} \text{m}$ is the Bohr radius, $I_R = 13.6 \text{eV}$ is the Rydberg energy, $m_e c^2$ is the rest mass energy of the electron, and β and γ are relativistic factors, A_1 and A_2 are empirical constants that depend on the type of gas species, and $f(\beta)$ is a function used when fitting data at low energies, i.e. $T_e \approx I_i$ where T_e is the kinetic energy of the electron and I_i is the ionization energy for the i^{th} gas species. Expressions for A_1 , A_2 , and $f(\beta)$ are given below:

$$f(\beta) = \frac{I_i}{T_e} \left(\frac{T_e}{I_i} - 1 \right) = \frac{2I_i}{m_e c^2 \beta^2} \left(\frac{m_e c^2 \beta^2}{2I_i} - 1 \right) \tag{3}$$

$$A_1 = M^2 \tag{4}$$

$$A_2 = \frac{e^{\frac{C}{M^2}}}{7.515 \times 10^4} \tag{5}$$

where C and M^2 are parameters given by Rieke and Prepejchal [2]. As an example calculation, for H_2 , the values of C, $M^2 = A_1$, A_2 , and the ionization energy I_i from [2, 3] are given in the table below:

Gas Species	$A_1 = M^2$	C	A_2	$I_i(eV)$
H_2	0.695	8.115	1.5668	15.4

Table 1: Values for C, $M^2 = A_1$, and A_2 given by Rieke and Prepejchal and I_i given by Salancon for H_2 gas [2, 3]

Since at high energies, $\beta_e \gg \beta_{ion}$, we will assume that in the above equations, $\beta \approx \beta_e$. For a 200keV electron beam, $T_e = 200 \text{keV}$, $m_e c^2 = 511 \text{keV}$,

$$T_e = (\gamma_e - 1) m_e c^2 = 200 \text{keV}$$

$$m_e c^2 = 511 \text{keV}$$

$$\gamma_e = 1 + \frac{T_e}{m_e c^2} = 1.39$$

$$\beta_e = \sqrt{1 - \frac{1}{\gamma_e^2}} = 0.695 \left(= 2.08 \times 10^8 \frac{\text{m}}{\text{s}} \right)$$

$$f(\beta_e) = \frac{I_i}{T_e} \left(\frac{T_e}{I_i} - 1 \right) \approx 1$$

$$\sigma_i = \frac{1.872 \times 10^{-24} A_1}{\beta_e^2} f(\beta_e) \left[\ln \left(7.515 \times 10^4 A_2 \beta_e^2 \gamma_e^2 \right) - \beta_e^2 \right]$$

$$\approx 2.994 \times 10^{-23} \text{m}^2$$

The change in density of the electron and gas molecules over time is given by Reiser[1]

$$\frac{dn}{dt} = n_b n_g \sigma_i v = n_b n_g \sigma_i \beta_e c \tag{6}$$

At standard temperature ($T_0 = 273.15$ K) and pressure ($p_0 = 760$ torr = 1atm) the density of an ideal gas in a given volume is given by Loschmidt's number:

$$n_0 = \frac{p_0}{k_B T_0} \approx 2.687 \times 10^{25} \text{m}^{-3} \tag{7}$$

Thus, for a given gas, its density is

$$n_g \left[\text{m}^{-3} \right] = \left(3.54 \times 10^{22} \right) p \left(\text{torr} \right)$$

For H₂, p (torr) can be read off from Figure 1. In this case, $p_{H_2} = 1.11 \times 10^{-9}$ torr with a correction factor of 0.46 for H₂, so $n_{H_2} = 8.54 \times 10^{13} \text{m}^{-3}$. Knowing the electron density in the beam, n_b , one can calculate the ionization rate $\frac{dn}{dt}$.

References

- [1] Martin Reiser. Theory and Design of Charged Particle Beams. Wiley VCH Verlag GmbH, 2008.
- [2] Foster F. Rieke and William Prepejchal. Ionization cross sections of gaseous atoms and molecules for high-energy electrons and positrons. *Physical Review A*, 6(4):1507–1519, oct 1972.
- [3] E. Salançon, Z. Hammadi, and R. Morin. A new approach to gas field ion sources. *Ultramicroscopy*, 95:183–188, may 2003.
- [4] S. P. Slinker, R. D. Taylor, and A. W. Ali. Electron energy deposition in atomic oxygen. *Journal of Applied Physics*, 63(1):1–10, jan 1988.