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1 Beamline Optics

This note describes a preliminary beamline design for detection and measurement of the
Stern-Gerlach deflection of relativistic 0.5 MeV (γ = 2) polarized electrons in the CEBAF
1D Spectrometer beamline.

Beamline parameters for the proposed beamline are given in Table 1. The quadrupole
layout is shown in Figure 1. By starting design the line elements are symmetric about

Table 1: Lattice parameters for the Stern-Gerlach beamline in the 1D Spectrometer beamline
served by the CEBAF injector. Asterisks indicate quadrupoles whose strengths can be much
weaker, and tailored to lead the beam gracefully to the beam dump. The assumed kinetic
energy is 500 KeV or, approximately γ = 2.

label longit. Loc. Quad Quad Bore Inv.foc. dBy/dx ∆θSG σy B(σ)
pos. label name length rad. length q

cm mm mm 1/m T/m Å/m mm T
s0 0 B0
s1 1.0 B1 qBC1 8 10 -725.4716 -263.9 -1.6234 2.84 -0.750
s2 1.2 B2 qBC2 8 10 396.0415 144.1 0.8862 1.28 0.185
s3 1.7 B3 qBC3 8 20 -181.9351 -66.17 -0.4071 14.14 -0.935
s4 7.4 C0
s5 12.7 C1 qCD1* 8 20 -38.4757 -14.00 -0.086 14.02 -0.196
s6 13.2 C2 qCD2* 8 20 7.9208 2.88 0.017 11.32 0.033
s7 13.4 C3 qCD3* 8 20 40.0000 14.54 0.090 10.41 0.152
s8 14.4 C4

the center at point C0. Except for slightly different initial conditions, and relaxing the
output focusing, the optics plots in the following figures respect this symmetry. To assure
the design is practically achievable, the strong quadrupoles are patterned after permanent
magnet quadrupoles described in Table III of a paper by Li and Musumeci[1]. The first two
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quadrupoles have substantially smaller bore radii than the rest. This enables their much
larger field gradients. Optical properties of the beamline are shown in the following figures.
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Figure 1: A six-quadrupole beam line for detection and measurement of Stern-Gerlach de-
flection of a polerized electron beam. The heavy black lines indicating quadrupole lengths
are not-to-scale, except, of course, that they cannot overlap. The dimensions on the plot
are approximately valid for a 500 KeV (kinetic energy) electron beam. But, by scaling all
lengths and quadrupole focal lengths, the same design is also applicable to other energies,
for example 5 MeV. In order for the S-G deflection to be purely vertical the quadrupoles
have to be “skew”, i.e. at 45◦ relative to “erect”.

The basic goal for the beamline optical design is to magnify the Stern-Gerlach displace-
ment without excessively increasing the transverse beam dimensions. Quadrupole doublet
design is made ineffective by the fact that the S-G deflections in two nearby, approximately
equal, but opposite sign quadrupoles, approximately cancel. The trick to overcoming this
cancellation can be understood from Figure 2. By placing the second quadrupole, qBC2, at
the beam waist caused by the vertical over-focusing in the first quadrupole, qBC1, the S-G
deflection at qBC2 can be cancelled. As a result, the dominant S-G deflection in the line is
that caused by qBC1; see Table 2. The design has the further virtue that the beta functions
are fairly large at source and at BPM.
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Figure 2: Vertical,
√
βy(s), and horizontal,

√
βx(s), beta functions for S-G detection and

measurement in the CEBAF 1D Spectrometer Line. In the central region the beta function
variations are weak. There is the possibility of some space charge blow-up occurring near
the horizontal focus at central point C. But this is expected to be acceptably small, at least
partially because of the substantial horizontal dispersion caused by the 30 degree bend at
the entrance to the line.

Figure 3: (Square root) beta function ratios
√
βx(s)/βx(s0) and

√
βy(s)/βy(s0). The initial

beta functions, β(s0) are determined by the beam emittances (which vary inversely with the
relativistic beam energy factor γ).

3



Figure 4: Transverse rms beam sizes as functions of longitudinal position s. For designs in
this tech-note, the maximum rms beam sizes have been constrained to be less than σy =
1.5 cm. If this is impractically large, either the vertical beam emittance will have to be
reduced, or the magnitude of the S-G deflection decreased. For first detecting the S-G
signal (which has never before been accomplished) the former approach is preferable. But,
for eventual precision Stern-Gerlach measurement, the S-G signal can probably be much
reduced without seriously impacting the precision. In other words, the optical magnification
can be reduced, to reduce the maximum transverse beam dimensions, and optimize the
precision.

Figure 5: Horizontal betatron phase advance as function of longitudinal position s.
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Figure 6: Vertical betatron phase advance ψy(s), as function of longitudinal position s.
Because ψy(s) is essentially constant over the central, high-β region, the Stern-Gerlach dis-
placement does not vary noticeably over this central region, in spite of the substantial angular
deflection ∆θSGy , caused by the (very strong) qBC1 quadrupole. Whatever S-G displacement
there is, is mostly already present at the qBC3 quadrupole.

5



2 Calculated Stern-Gerlach Displacement

The ratio of Stern-Gerlach to electromagnetic force is determined by a ratio of coupling
constants:

µB/c

e
= 1.930796× 10−13 m, (1)

where, except for anomalous magnetic moment and sign, Bohr magneton µB is the electron
magnetic moment. Because this ratio is not dimensionless, a further inverse length numerical
factor, alters the ratio of S-G to electromagnetic deflection angle. This factor can be taken to
be a quadrupole strength (i.e. inverse focal length) q, which can be quite large numerically
(approaching 1000/m, for example); see Table 1.

The Stern-Gerlach deflection in a quadrupole is strictly proportional to the inverse focal
length of the quadrupole[2];

∆θSGy = − µ∗
x

ecβ
qx, and ∆θSGy =

µ∗
y

ecβ
qy, (2)

These formulas are boxed to emphasize their universal applicability to all cases of polarized
beams passing through quadrupoles. For all practical (electron beam) cases β ≈ 1.

The S-G deflection at fixed magnet excitation is proportional to 1/γ. Yet, superficially,
these formulas show no explicit dependence on γ. This is only because the angular deflections
are expressed in terms of quadrupole inverse focal lengths. For a given quadrupole at fixed
quadrupole excitation, the inverse focal length scales as 1/γ. Expressing the S-G deflection
in terms of inverse focal lengths has the effect of “hiding” the 1/γ Stern-Gerlach deflection
dependence, which comes from the beam stiffness.

µ∗
x and µ∗

y differ from the Bohr magnetron µB only by sin θ and cos θ factors respectively
For a single quadrupole, the Stern-Gerlach-induced angular deflection is

∆θSGy = (1.93× 10−13 m) qy. (3)

The transverse displacement ∆yj at downstream location “j” caused by angular displacement
∆θy,i at upstream location “i” is given by

∆y,j = qy (1.93× 10−13 m)
√
βy,jβy,i sin(ψy,j − ψy,i). (4)

where ψy,j − ψy,i is the vertical betatron phase advance from “i” to “j”. The lattice optics
initial conditions will not be very well known initially. Yet the optimal beamline design
is quite sensitive to the beam conditions. The calculations in this note have assumed the
following plausible initial beam conditions (for both horizontal and vertical coordinates):

ε =
1.0× 10−6 m

γ
,

σB0 =
0.004 m
√
γ

,

βB0 =
σ2

ε
, αB0 = 0, ψB0 = 0. (5)
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epsilon_x := 1.0e-6/gamrel;

epsilon_y := 1.0e-6/gamrel;

sigmafac := 1/sqrt(gamrel);

sigmaB0x := 0.004*sigmafac; # sigmaB0x := 0.004*sigmafac;

sigmaB0y := 0.004*sigmafac; # sigmaB0y := 0.004*sigmafac;

betB0x := sigmaB0x^2/epsilon_x;

betB0y := sigmaB0y^2/epsilon_y;

alfB0x := 0.0: alfB0y := 0.0:

phB0x := 0.0: phB0y := 0.0:

betC0y := 0.001;

The resulting S-G deflections are shown in Table 2. As explained earlier the S-G displacement

Table 2: .Stern-Gerlach displacements, measured in Å units, at points along the beamline,
for kinetic energy Ke = 500 KeV.

S-G deflec. displacement
source at C0

Å
qBC1 8.832
qBC2 0.009
qBC3 -0.022
qCD1 0
qCD2 0
total 8.82

is essentially constant over the central region. Stretching the central region, even by a large
amount, has little effect on the S-G displacement. This can allow allow the S-G detection
BPM to be long, to increase their sensitivity, or even multiple, to lower the noise floor.

3 Uncertainty and Conclusions

The greatest uncertainty in the calculation concerns Eqs. (5), and the corresponding lines
of code listed below these equations. To magnify the Stern-Gerlach deflection one wants the
vertically-deflecting quadrupole to be strong. This automatically causes βy to increase, which
increases the beam height. Accepting the limitation that the rms beam height cannot exceed
15 mm, this limits the downstream S-G displacement. In detail this limitation depends on
the initial beta function/emittance/beam height assumptions. The entries in Eqs. (5) are
subject to change as the beamline is tuned up. Comments on optimizing the beamline have
been given in the caption to Figure 4.

The Stern-Gerlach energy dependence has been much discussed in the past. The im-
portance of the transverse beam size has not previously, as far as I know, been properly
appreciated in those discussions. It is now my opinion that, as long as the transverse beam
dimensions are dominated by adiabatic damping (with increased energy), the quadrupole
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length/strength scaling can be maintained, and the transverse aperture limit is indepen-
dent of energy, that the achievable S-G-induced betatron beam deflection is more or less
independent of energy.

As far as the proof-of-principle test at CEBAF, the most convenient energy appears to be
at 500 KeV, but this is for reasons of economy and accessibility, not because the S-G signal
is strongest at low energy.

For the assumed electron beam parameters, I have been unable to produce S-G betatron
amplitude greater than 1 nanometer. As I have argued previously and repeatedly, especially
with Reza’s suggested toggling-polarization beam preparation, with further low frequency
beam polarization modulation, and with accurate BPM centering, it should not be difficult
to isolate this Stern-Gerlach signal from the many spurious sources of BPM excitation.
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