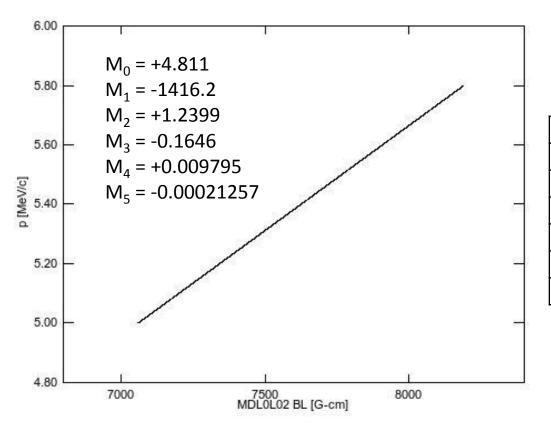
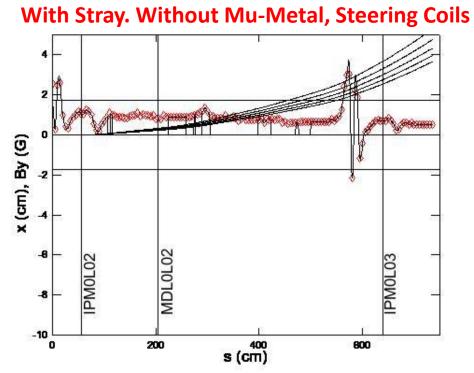

Beam Energy Measurements for Mott Run II: Dry run for Bubble?

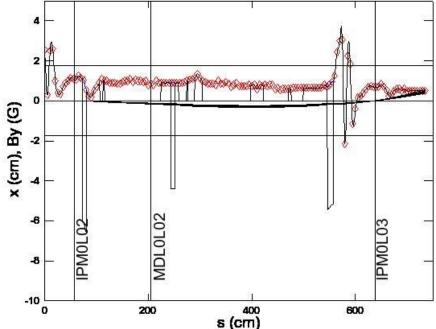
Joe Grames


March 9, 2016

- Oct 2015 studied Mott analyzing power vs. beam energy.
- Varied beam kinetic energy 4.5-5.3 MeV in 0.2 MeV steps.
- Record cavity gradient, Bubble dipole, steering coils, beam positions.

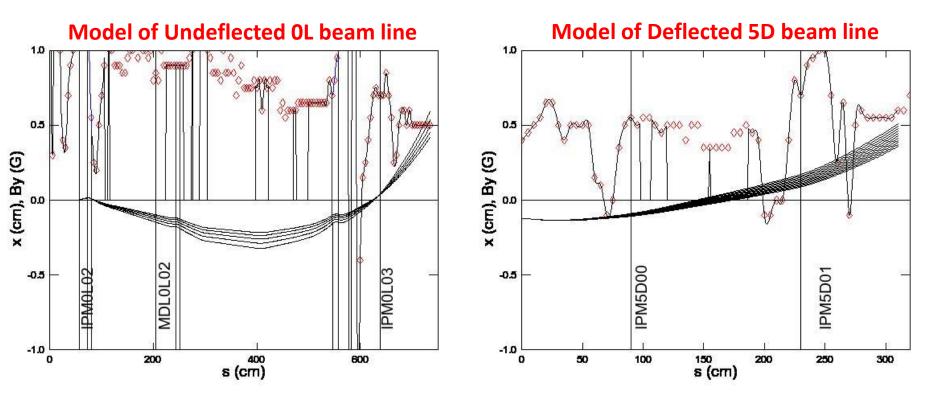

- J. Benesh, "A detailed examination of the MDL field map and the TOSCA model of this "5 MeV" dipole", JLab-TN-15-017.
- TN provides model for ideal operation with $\delta P/P = 0.1\%$

$$BL = M_0 + M_1 P + M_2 P^2 + M_3 P^3 + M_4 P^4 + M_5 P^5$$



R028	MDL0L02	Р	dP
MV/m	G-cm	MeV/c	MeV/c
3.35	7109.57	5.035	0.005
3.74	7384.34	5.229	0.005
4.12	7646.01	5.415	0.005
4.5	7927.59	5.614	0.006
4.89	8185	5.797	0.006

- Magnetic fields other than dipole play important role:
 - Stray B_v field (red points) from Earth and Ion Pumps
 - Distributed mu-metal helps shield beam from stray field
 - Steering coils provide distributed point-correction
- Constructed simple model to track fields
 - Plots show trajectories for 4.5-6.5 MeV/c in 0.5 MeV/c increments
 - Without steering coils beam is "lost" to pipe wall x=1.75cm
 - With steering coils orbit is realistic and quasi-independent of momentum


Record SRF gradient, steering coils, Bubble dipole and beam positions.

Conditions for individual measurements					Undeflected			Deflected			
R028	МВНОГО1	МНВОГОЗ	МНВОLО2А	МНВОL02В	<i>МВНО</i> ГОЗ	WDL0L02	IPM0L02.XPOS	IPM0L03.XPOS	WDL0L02	IPM5D00.XPOS	IPM5D01.XPOS
MV/m	mA	mA	mA	mA	mA	G-cm	mm	mm	G-cm	mm	mm
3.35	-325.00	-292.00	-214.54	-0.03	-342.83	0.00	0.03	0.22	7109.57	0.00	3.50
3.74	-327.00	-293.00	-214.54	-0.03	-342.83	0.00	0.08	0.17	7384.34	0.01	3.67
4.12	-329.00	-292.00	-214.54	-0.03	-342.83	0.00	0.06	0.15	7646.01	0.00	4.06
4.50	-332.00	-286.00	-214.54	-0.03	-342.83	0.00	-0.02	0.00	7927.59	0.00	3.89
4.89	-333.00	-287.00	-214.54	-0.03	-342.83	0.00	0.05	0.21	8185.00	0.03	3.85

- Convert recorded beam positions (.XPOS) to absolute survey positions (.XCOR).
 - \circ Assumed calibration of beam position monitor to quadrupole σ = 0.50 mm
 - \circ Assumed survey of quadrupole to absolute coordinates σ =0.25 mm

Constant	Undeflected					Deflected						
R028	IPM0L02.XPOS	MQJ0L02.XOFF	IPM0L02.XCOR	IPM0L03.XPOS	MQJ0L03A.XOFF	IPM0L03.XCOR	IPM5D00.XPOS	MQD5D00.XOFF	IPM5D00.XCOR	IPM5D01.XPOS	MQD5D01.XOFF	IPM5D01.XCOR
MV/m	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
3.35	0.03	-0.01	0.04	0.22	-0.24	0.46	0.00	-0.27	0.27	3.50	-0.22	3.72
3.74	0.08	-0.01	0.09	0.17	-0.24	0.41	0.01	-0.27	0.28	3.67	-0.22	3.89
4.12	0.06	-0.01	0.07	0.15	-0.24	0.39	0.00	-0.27	0.27	4.06	-0.22	4.28
4.50	-0.02	-0.01	-0.01	0.00	-0.24	0.24	0.00	-0.27	0.27	3.89	-0.22	4.11
4.89	0.05	-0.01	0.06	0.21	-0.24	0.45	0.03	-0.27	0.30	3.85	-0.22	4.07

- Model trajectories using beam positions and propagate uncertainties
 - Use 0L BPM's to constrain orbit and predict beam (X,X') at dipole MDL0L02
 - Use (X,X') at dipole and 5D BPM's to determine how much $\theta <> 25.0^\circ$
 - Correct Jay's model calculation proportionally : $P_{TOSCA}(25.0^{\circ}) \cdot [25.0^{\circ}/(25.0^{\circ}+\theta)]$

• Model predicts dipole deflected beam in excess of 25.0° by $<\theta>$:

 $\langle \theta \rangle = 1.311 \pm 0.267 \text{ mrad} = 0.0751^{\circ} \pm 0.015^{\circ}$

Error budget for Mott Run II

Contribution	Value
TOSCA Model (Ref [4])	0.10%
Magnet Power Supply Calibration	0.01%
Model Correction	0.06%
Total	0.12%

Summary for Mott Run II

Con	ditions	M	Kinetic Energy			
R028	MDL0L02	TOSCA	Corre	ected	Final	
GSET	BL	P_T	P_C δP_C		T	δT
MV/m	G-cm	MeV/c	MeV/c	MeV/c	MeV	MeV
3.350	7109.570	5.035	5.020	0.006	4.535	0.006
3.740	7384.340	5.229	5.213	0.006	4.727	0.006
4.120	7646.010	5.415	5.399	0.006	4.912	0.006
4.500	7927.590	5.614	5.597	0.007	5.109	0.007
4.890	8185.000	5.797	5.780	0.007	5.291	0.007

Recommendations for Bubble

- Shielding helpful, but probably not global solution => still need model
- Improve beam position monitoring around (0L) or further from (5D) dipole
- Greatest "bang for effort" systematic study of model for non-ideal orbits