Gamma Flux

Bubble Chamber Expected Rates – Sept 2015

January 20, 2016

OUTLINE

- GEANT Model
- Gamma Flux vs Electron Kinetic Energy
- Expected Natural N₂O Rate
- Expected Rates of:
 - I. $^{18}O(\gamma,\alpha)^{14}C$
 - II. $^{17}O(\gamma,n)^{16}O$
 - III. $^{14}N(\gamma,p)^{13}C$
- Remarks

GEANT4 MODEL

- Gap between radiator and collimator = 0.59 inches
- Distance between radiator and center of glass cell
 = 14.02 inches

Total
$$N_{\gamma} = 9.3 \times 10^8 / (\mu A s)$$

GEANT4 Cut = 1 keV

Total $N_v =$ $1.1 \times 10^9 / (\mu A s)$

Total
$$N_{\gamma} = 1.2 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 1.3 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 1.5 \times 10^9 / (\mu A s)$$

Photon Energy (MeV)

Total $N_{\gamma} = 1.7 \times 10^9 / (\mu A s)$

Total
$$N_{\gamma} = 1.9 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 2.1 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 2.3 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 2.5 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 2.7 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 3.0 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 3.2 \times 10^9 / (\mu A s)$$

Photon Energy (MeV)

Total
$$N_{\gamma} = 3.5 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 3.8 \times 10^9 / (\mu A s)$$

Total $N_{\gamma} = 4.1 \times 10^9 / (\mu A s)$

Total
$$N_{\gamma} = 4.4 \times 10^9 / (\mu A s)$$

Total $N_{\gamma} = 4.5 \times 10^9 / (\mu A s)$

Total
$$N_{\gamma} = 5.1 \times 10^9 / (\mu A s)$$

Total $N_{\gamma} = 5.5 \times 10^9 / (\mu A s)$

Total
$$N_{\gamma} = 5.9 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 6.3 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 7.1 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 7.5 \times 10^9 / (\mu A s)$$

Total $N_{\gamma} = 8.0 \times 10^9 / (\mu A s)$

Total
$$N_{\gamma} = 8.4 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 8.9 \times 10^9 / (\mu A s)$$

Total
$$N_{\gamma} = 9.4 \times 10^9 / (\mu A s)$$

Total $N_{\gamma} = 9.9 \times 10^9 / (\mu A s)$

EXPECTED NATURAL N₂O RATES

• For natural N_2O , most events are γ - α from ¹⁸O

EXPECTED $^{17}O(\gamma,n)^{16}O$ RATE

- Chamber threshold = 130 keV
- Elastic neutron scattering ¹⁶O(n,n) and ¹⁴N(n,n) is not included

EXPECTED $^{14}N(\gamma,p)^{13}C$ RATE

 Expected rate from ¹⁴N(γ,p)¹³C with lower operational pressure (Chamber threshold = 50 keV)

CONCLUSIONS

- Design new radiator to match lower electron energy for $^{19}F(\gamma,\alpha)^{15}N$
- Must reduce distance between radiator and chamber to increase flux by at least a factor of 10
- Use silver (or even gold) radiator?
- Use silver collimator