
DAQ Speed and Run2 Estimates

April 3, 2015

Estimates Assumptions

DAQ Rate limit = 2 kHz, Deadtime = 15%

- Dump rate = $100 \text{ Hz/}\mu\text{A}$ per detector:
 - Measured during Run1 5 MeV data at
 - Discriminator Threshold was 25 mV (or energy of about 1.25 MeV)
 - Dump Dipole Magnet was at +5A

3 MeV

T(um) = 0.05 T(um) = 0.05 T(um) = 0.225 T(um) = 0.35 T(um) = 0.35 T(um) = 0.5 T(um) = 0.625 T(um) = 0.75 T(um) = 0.87 T(um) = 1	I (uA) = 2.89021 I (uA) = 2.89021 I (uA) = 1.16689 I (uA) = 0.818349 I (uA) = 0.818349 I (uA) = 0.602424 I (uA) = 0.493839 I (uA) = 0.418421 I (uA) = 0.364919 I (uA) = 0.320521	Elas(Hz) = 843.917 Elas(Hz) = 843.917 Elas(Hz) = 1533.25 Elas(Hz) = 1672.66 Elas(Hz) = 1672.66 Elas(Hz) = 1759.03 Elas(Hz) = 1802.46 Elas(Hz) = 1832.63 Elas(Hz) = 1854.03 Elas(Hz) = 1871.79	Dmp(Hz) = 1156.08 Dmp(Hz) = 1156.08 Dmp(Hz) = 466.754 Dmp(Hz) = 327.34 Dmp(Hz) = 327.34 Dmp(Hz) = 240.97 Dmp(Hz) = 197.536 Dmp(Hz) = 167.368 Dmp(Hz) = 145.968 Dmp(Hz) = 128.208	Tot(Hz) = 2000 Tot(Hz) = 2000	Tim (h) = 0.642548 Tim (h) = 0.642548 Tim (h) = 0.373913 Tim (h) = 0.356321 Tim (h) = 0.356321 Tim (h) = 0.354643 Tim (h) = 0.359231 Tim (h) = 0.366475 Tim (h) = 0.374954 Tim (h) = 0.385279	N_elas(M#) = 1.95213 N_elas(M#) = 1.95213 N_elas(M#) = 2.06388 N_elas(M#) = 2.14561 N_elas(M#) = 2.14561 N_elas(M#) = 2.24578 N_elas(M#) = 2.331 N_elas(M#) = 2.41781 N_elas(M#) = 2.50264 N_elas(M#) = 2.50264
5 MeV						
T(um) = 0.05 T(um) = 0.05 T(um) = 0.225 T(um) = 0.35 T(um) = 0.35 T(um) = 0.5 T(um) = 0.625 T(um) = 0.75 T(um) = 0.87 T(um) = 1	I (uA) = 4.27389 I (uA) = 4.27389 I (uA) = 2.83363 I (uA) = 2.28388 I (uA) = 2.28388 I (uA) = 1.85258 I (uA) = 1.60068 I (uA) = 1.40908 I (uA) = 1.26385 I (uA) = 1.13691	Elas(Hz) = 290.443 Elas(Hz) = 290.443 Elas(Hz) = 866.548 Elas(Hz) = 1086.45 Elas(Hz) = 1086.45 Elas(Hz) = 1258.97 Elas(Hz) = 1359.73 Elas(Hz) = 1436.37 Elas(Hz) = 1494.46 Elas(Hz) = 1545.23	Dmp(Hz) = 1709.56 Dmp(Hz) = 1709.56 Dmp(Hz) = 1133.45 Dmp(Hz) = 913.552 Dmp(Hz) = 913.552 Dmp(Hz) = 741.032 Dmp(Hz) = 640.272 Dmp(Hz) = 563.633 Dmp(Hz) = 505.542 Dmp(Hz) = 454.765	Tot(Hz) = 2000 Tot(Hz) = 2000	Tim (h) = 1.59739 Tim (h) = 1.59739 Tim (h) = 0.585837 Tim (h) = 0.497104 Tim (h) = 0.497104 Tim (h) = 0.460941 Tim (h) = 0.452252 Tim (h) = 0.45293 Tim (h) = 0.458846 Tim (h) = 0.469088	N_elas(M#) = 1.67022 N_elas(M#) = 1.67022 N_elas(M#) = 1.82756 N_elas(M#) = 1.94428 N_elas(M#) = 1.94428 N_elas(M#) = 2.08911 N_elas(M#) = 2.21378 N_elas(M#) = 2.34206 N_elas(M#) = 2.46861 N_elas(M#) = 2.60946
8 MeV						
T(um) = 0.05 T(um) = 0.05 T(um) = 0.225 T(um) = 0.35 T(um) = 0.35 T(um) = 0.5 T(um) = 0.625 T(um) = 0.75 T(um) = 0.87 T(um) = 1	I (uA) = 4.75761 I (uA) = 4.75761 I (uA) = 4.06748 I (uA) = 3.6856 I (uA) = 3.6856 I (uA) = 3.31241 I (uA) = 3.05466 I (uA) = 2.83413 I (uA) = 2.65044 I (uA) = 2.47654	Elas(Hz) = 96.955 Elas(Hz) = 96.955 Elas(Hz) = 373.009 Elas(Hz) = 525.76 Elas(Hz) = 525.76 Elas(Hz) = 675.034 Elas(Hz) = 778.134 Elas(Hz) = 866.348 Elas(Hz) = 939.826 Elas(Hz) = 1009.38	Dmp(Hz) = 1903.05 Dmp(Hz) = 1903.05 Dmp(Hz) = 1626.99 Dmp(Hz) = 1474.24 Dmp(Hz) = 1474.24 Dmp(Hz) = 1324.97 Dmp(Hz) = 1221.87 Dmp(Hz) = 1133.65 Dmp(Hz) = 1060.17 Dmp(Hz) = 990.616	Tot(Hz) = 2000 Tot(Hz) = 2000	Tim (h) = 6.03289 Tim (h) = 6.03289 Tim (h) = 1.80348 Tim (h) = 1.40592 Tim (h) = 1.40592 Tim (h) = 1.2193 Tim (h) = 1.15202 Tim (h) = 1.123 Tim (h) = 1.11646 Tim (h) = 1.12472	N_elas(M#) = 2.10571 N_elas(M#) = 2.10571 N_elas(M#) = 2.42176 N_elas(M#) = 2.66104 N_elas(M#) = 2.66104 N_elas(M#) = 2.96305 N_elas(M#) = 3.22713 N_elas(M#) = 3.50247 N_elas(M#) = 3.77741 N_elas(M#) = 4.08697

Dump Event Suppression

Increase Discriminator Threshold – Tested in Run1

 Study Dump dipole (+5A, 0A, +5A) – Tested in Run1 (for thinner foils, 0A or -5A may yield lower dump rate)

Laser timing veto – Tested on February 9, 2015

Note: Dump rate depends on electron energy (~1/E)

Run2 Strategy

At 3 MeV:

- Dump events will be higher due to energy
- Increase Discriminator Threshold
- ➤ Thick foils will benefit from faster DAQ but very little reduction in overall time required for Run2. Here DAQ speed will help with systematic studies, e.g., many short runs with very high statistics for stability study.

At 8 MeV:

- Dump events will be lower due to energy
- Elastic rate is too low to benefit from faster DAQ
- Suppress dump events will reduce deadtime
- Will run at about 5 μA (31 MHz) for all foils (current limited)

What is a reasonable current limit? Run1 was 5 µA

SUMMARY OF FADC DEVELOPMENT FOR FASTER PERFORMANCE

REMAINING CHALLENGES & PLANS