DAQ Speed and Run2 Estimates

April 3, 2015

Summary of FADC Development for Faster Performance

Name	Readout	Trigger
Scalers	Scaler S1 (helicity gated), S2 (un-gated)	Delayed nT_Settle
Mott_Sample	Mott FADC (Mode=1), S1, S2, TDC	Mott Detector
Mott_SemiInt	Mott FADC (Mode=7), S1, S2, TDC	Mott Detector
PEPPo_Int	INT FADC, S1, S2	nT_Settle
SemiIntFast	Mott FADC (Mode=7), BlockLevel=1	Mott Detector
SemiIntBlock	Mott FADC (Mode=7), BlockLevel=50	Mott Detector
SampleBlock	Mott FADC (Mode=1), BlockLevel=50	Mott Detector

For DAQ to be faster:

- I. No Readout of CAEN V775 TDC or SIS3801 Scalers; only FADC readout
- II. Use block readout

Beam Test (Goal: Can we use FADC timing)

• February 9, 2015:

- Run 8225: Mott_SemiInt, deadtime = 28% at 5.1 kHz
- Run 8227: SemiIntFast, deadtime = 17% at 5.1 kHz
- Run 8228: SemilntBlock, deadtime = 1% at 5.1 kHz

JLab expert changed FADC firmware

March 17, 2015:

- Mott Run 8312: Mott_SemiInt, FADC Delay: Ch8=0,CH9=0,Ch11=4
- Mott Run 8313: Mott_SemiInt, FADC Delay: Ch8=0,CH9=2,Ch11=4

- Mott Run 8315: Mott_Sample, deadtime = 32% at 5.5 kHz
- Mott Run 8316: <u>SampleBlock, deadtime = 4% at 5.5 kHz</u>

Problem handling periodic signals

Still analyzing but problem may not be solved yet

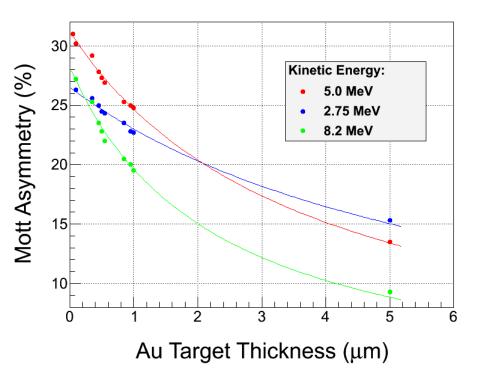
The other option is to readout the raw data and calculate timing in analysis (raw data files will be larger)

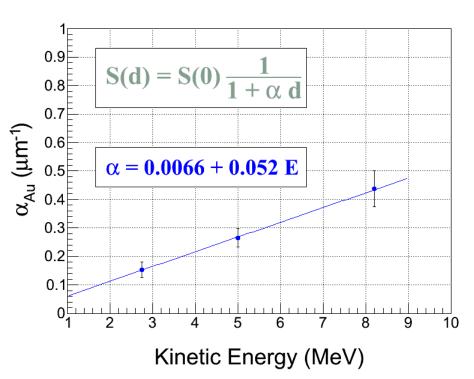
Remaining Challenges and Plans

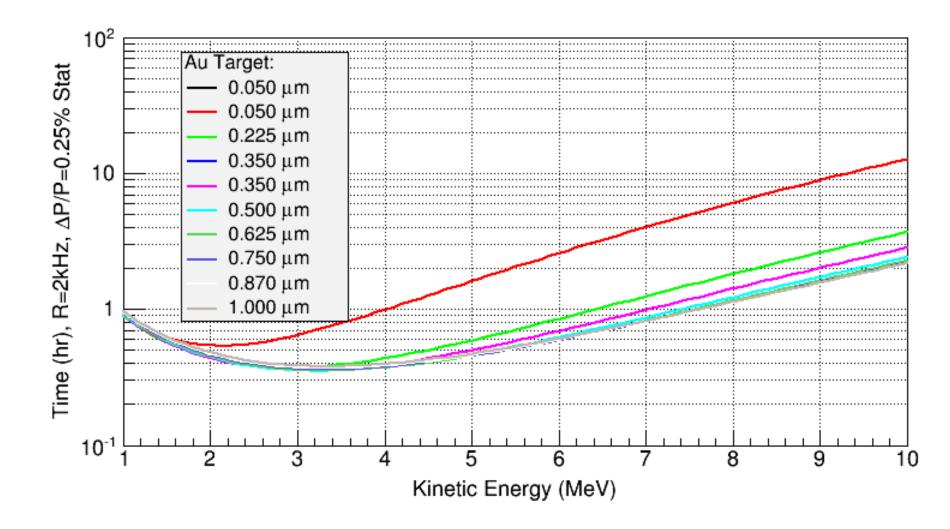
- Show that we can use FADC timing, either:
 - Timing is done in firmware, or
 - Timing is done in analysis

 Otherwise: Keep using TDC but figure out a way to run faster or upgrade to new TDC

For scalers: we can upgrade to new JLab scalers we have


Change decoder to be able to decode Block data


Au Estimates


Estimates Assumptions

- DAQ rate limit = 2 kHz, deadtime = 15%. Note that any systematic errors due to deadtime cancel to all orders in cross-ratio method – Measured in Run1
- Current limit of 5 μA
- Dump rate = $100 \text{ Hz/}\mu\text{A}$ per detector:
 - Measured during Run1 5 MeV data at
 - Discriminator threshold was 25 mV (or energy of about 1.25 MeV)
 - Dump dipole magnet was at +5A

Target Thickness Extrapolation

3 MeV

I (uA) = 2.89021 I (uA) = 2.89021 I (uA) = 1.16689 I (uA) = 0.818349 I (uA) = 0.818349 I (uA) = 0.602424 I (uA) = 0.493839 I (uA) = 0.418421 I (uA) = 0.364919 I (uA) = 0.320521	Elas(Hz) = 843.917 Elas(Hz) = 843.917 Elas(Hz) = 1533.25 Elas(Hz) = 1672.66 Elas(Hz) = 1672.66 Elas(Hz) = 1759.03 Elas(Hz) = 1802.46 Elas(Hz) = 1832.63 Elas(Hz) = 1854.03 Elas(Hz) = 1871.79	Dmp(Hz) = 1156.08 Dmp(Hz) = 1156.08 Dmp(Hz) = 466.754 Dmp(Hz) = 327.34 Dmp(Hz) = 327.34 Dmp(Hz) = 240.97 Dmp(Hz) = 197.536 Dmp(Hz) = 167.368 Dmp(Hz) = 145.968 Dmp(Hz) = 128.208	Tot(Hz) = 2000 Tot(Hz) = 2000	Tim (h) = 0.642548 Tim (h) = 0.642548 Tim (h) = 0.373913 Tim (h) = 0.356321 Tim (h) = 0.356321 Tim (h) = 0.354643 Tim (h) = 0.359231 Tim (h) = 0.366475 Tim (h) = 0.374954 Tim (h) = 0.385279	N_elas(M#) = 1.95213 N_elas(M#) = 1.95213 N_elas(M#) = 2.06388 N_elas(M#) = 2.14561 N_elas(M#) = 2.14561 N_elas(M#) = 2.24578 N_elas(M#) = 2.331 N_elas(M#) = 2.41781 N_elas(M#) = 2.50264 N_elas(M#) = 2.59619
I (uA) = 4.27389 I (uA) = 4.27389 I (uA) = 2.83363 I (uA) = 2.28388 I (uA) = 2.28388 I (uA) = 1.85258 I (uA) = 1.60068 I (uA) = 1.40908 I (uA) = 1.26385 I (uA) = 1.13691	Elas(Hz) = 290.443 Elas(Hz) = 290.443 Elas(Hz) = 866.548 Elas(Hz) = 1086.45 Elas(Hz) = 1086.45 Elas(Hz) = 1258.97 Elas(Hz) = 1359.73 Elas(Hz) = 1436.37 Elas(Hz) = 1494.46 Elas(Hz) = 1545.23	Dmp(Hz) = 1709.56 Dmp(Hz) = 1709.56 Dmp(Hz) = 1133.45 Dmp(Hz) = 913.552 Dmp(Hz) = 913.552 Dmp(Hz) = 741.032 Dmp(Hz) = 640.272 Dmp(Hz) = 563.633 Dmp(Hz) = 505.542 Dmp(Hz) = 454.765	Tot(Hz) = 2000 Tot(Hz) = 2000	Tim (h) = 1.59739 Tim (h) = 1.59739 Tim (h) = 0.585837 Tim (h) = 0.497104 Tim (h) = 0.497104 Tim (h) = 0.460941 Tim (h) = 0.452252 Tim (h) = 0.45293 Tim (h) = 0.458846 Tim (h) = 0.469088	N_elas(M#) = 1.67022 N_elas(M#) = 1.67022 N_elas(M#) = 1.82756 N_elas(M#) = 1.94428 N_elas(M#) = 1.94428 N_elas(M#) = 2.08911 N_elas(M#) = 2.21378 N_elas(M#) = 2.34206 N_elas(M#) = 2.46861 N_elas(M#) = 2.60946
I (uA) = 4.75761 I (uA) = 4.75761 I (uA) = 4.06748 I (uA) = 3.6856 I (uA) = 3.6856 I (uA) = 3.31241 I (uA) = 3.05466 I (uA) = 2.83413 I (uA) = 2.65044 I (uA) = 2.47654	Elas(Hz) = 96.955 Elas(Hz) = 96.955 Elas(Hz) = 373.009 Elas(Hz) = 525.76 Elas(Hz) = 525.76 Elas(Hz) = 675.034 Elas(Hz) = 778.134 Elas(Hz) = 866.348 Elas(Hz) = 939.826 Elas(Hz) = 1009.38	Dmp(Hz) = 1903.05 Dmp(Hz) = 1903.05 Dmp(Hz) = 1626.99 Dmp(Hz) = 1474.24 Dmp(Hz) = 1474.24 Dmp(Hz) = 1324.97 Dmp(Hz) = 1221.87 Dmp(Hz) = 1133.65 Dmp(Hz) = 1060.17 Dmp(Hz) = 990.616	Tot(Hz) = 2000 Tot(Hz) = 2000	Tim (h) = 6.03289 Tim (h) = 6.03289 Tim (h) = 1.80348 Tim (h) = 1.40592 Tim (h) = 1.40592 Tim (h) = 1.2193 Tim (h) = 1.15202 Tim (h) = 1.123 Tim (h) = 1.11646 Tim (h) = 1.12472	N_elas(M#) = 2.10571 N_elas(M#) = 2.10571 N_elas(M#) = 2.42176 N_elas(M#) = 2.66104 N_elas(M#) = 2.66104 N_elas(M#) = 2.96305 N_elas(M#) = 3.22713 N_elas(M#) = 3.50247 N_elas(M#) = 3.77741 N_elas(M#) = 4.08697
	I (uA) = 2.89021 I (uA) = 1.16689 I (uA) = 0.818349 I (uA) = 0.602424 I (uA) = 0.493839 I (uA) = 0.418421 I (uA) = 0.364919 I (uA) = 0.320521 I (uA) = 2.83363 I (uA) = 2.28388 I (uA) = 2.28388 I (uA) = 1.85258 I (uA) = 1.60068 I (uA) = 1.40908 I (uA) = 1.26385 I (uA) = 1.26385 I (uA) = 1.3691 I (uA) = 4.75761 I (uA) = 4.75761 I (uA) = 4.75761 I (uA) = 3.6856	I (uA) = 2.89021 I (uA) = 1.16689 I (uA) = 0.818349 I (uA) = 0.602424 I (uA) = 0.493839 I (uA) = 0.364919 I (uA) = 0.320521 I (uA) = 2.83363 I (uA) = 2.28388 I (uA) = 2.28388 I (uA) = 2.28388 I (uA) = 1.85258 I (uA) = 1.60068 I (uA) = 1.40908 I (uA) = 1.13691 I (uA) = 4.75761 I (uA) = 1.36365 I (uA) = 3.6856 I (uA) = 3.6856 I (uA) = 3.6856 I (uA) = 3.05466 I (uA) = 2.83413 I (uA) = 2.85044 I (uA) = 2.866.348 I (uA) = 2.85044 I (uA) = 2.85044 I (uA) = 3.9826	I (uA) = 2.89021 I (uA) = 1.16689 I (uA) = 0.818349 I (uA) = 0.818349 I (uA) = 0.602424 I (uA) = 0.602424 I (uA) = 0.493839 I (uA) = 0.493839 I (uA) = 0.364919 I (uA) = 0.326521 I (uA) = 0.326521 I (uA) = 2.83363 I (uA) = 2.83363 I (uA) = 2.28388 I (uA) = 2.28388 I (uA) = 2.28388 I (uA) = 1.85258 I (uA) = 1.60668 I (uA) = 1.40908 I (uA) = 1.40908 I (uA) = 1.40908 I (uA) = 1.40585 I (uA) = 1.26385 I (uA) = 3.6856 I (uA) = 3.8413 I (uA) = 2.83413 I (uA) = 2.65044 I (uA) = 3.6856 I (uA) = 2.83413 I (uA) = 2.65044 I (uA) = 2.83413 I (uA) = 2.65044 I (uA) = 2.83413 I (uA) = 2.65044 I (uA) = 2.83413 I (uA) = 2.650644 I (uA) = 2.65064 I (uA) = 2.650644 I (uA) = 2.650	I (UA) = 2.89021	I (uA) = 2.89021 Elas(Hz) = 843.917 Elas(Hz) = 1533.25 Dmp(Hz) = 156.08 Tot(Hz) = 2000 Tim (h) = 0.642548 Tot(Hz) = 2000 Tim (h) = 0.642548 Tot(Hz) = 2000 Tim (h) = 0.356321 Tim

Dump Event Suppression

Increase discriminator threshold – Tested in Run1

 Study dump dipole (+5A, 0A, +5A) – Tested in Run1 (for thinner foils, 0A or -5A may yield lower dump rate)

Laser timing veto – Tested on February 9, 2015

Note: Dump rate depends on electron energy (~1/E)

Run2 Strategy

At 3 MeV:

- Dump events will be higher due to energy
- Increase discriminator threshold
- ➤ Thick foils will benefit from faster DAQ but very little reduction in overall time required for Run2. Here DAQ speed will help with systematic studies, e.g., many short runs with very high statistics for stability study.

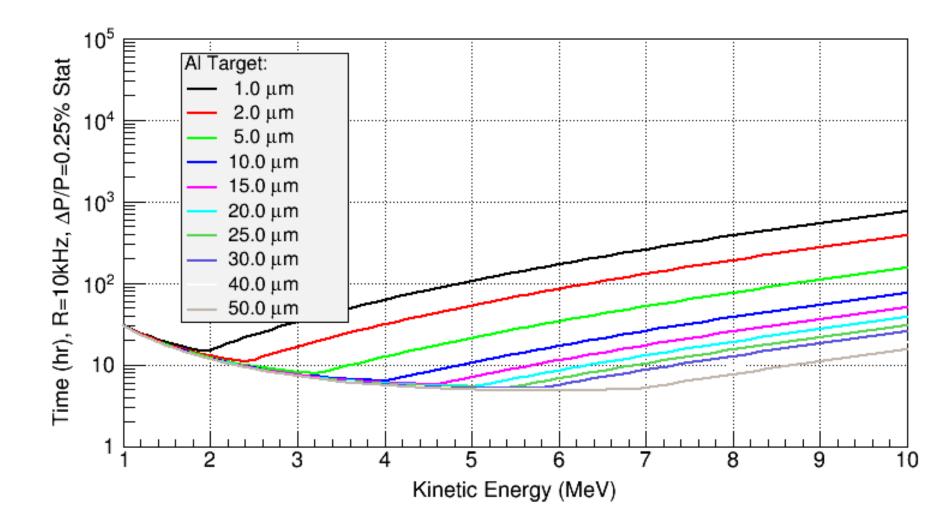
At 8 MeV:

- Dump events will be lower due to energy
- Elastic rate is too low to benefit from faster DAQ
- Suppress dump events will reduce deadtime
- Will run at about 5 μA (31 MHz) for all foils (current limited)

What is a reasonable current limit? Run1 was 5 µA

Al Estimates

Al Estimates Assumptions


• DAQ rate limit = 10 kHz

• Current limit = $40 \mu A$

We have to suppress dump events for Al

 Dump rate (with suppression) = 10 Hz/μA per detector

• Target thickness extrapolation: $\alpha = 0$


```
KE = 3 MeV
       T(um) = 1
                       I (uA) = 40
                                               Tim(h) = 33.0332
                       I (uA) = 40
       T(um) = 2
                                               Tim(h) = 16.5166
       T(um) = 5
                       I(uA) = 32.5581
                                               Tim(h) = 8.11673
       T(um) = 10
                       I(uA) = 17.4129
                                               Tim(h) = 7.5882
                       I(uA) = 11.8845
       T(um) = 15
                                               Tim(h) = 7.41202
       T(um) = 20
                       I(uA) = 9.02061
                                               Tim(h) = 7.32393
       T(um) = 25
                       I(uA) = 7.26895
                                               Tim(h) = 7.27108
       T(um) = 30
                                               Tim(h) = 7.23584
                       I(uA) = 6.08695
       T(um) = 40
                                               Tim(h) = 7.1918
                       I(uA) = 4.59317
       T(um) = 50
                                               Tim(h) = 7.16537
                       I(uA) = 3.68809
. . . . . . . . . . . . . . .
KE = 5 MeV
                       I (uA) = 40
                                               Tim(h) = 105.241
       T(um) = 1
       T(um) = 2
                       I (uA) = 40
                                               Tim(h) = 52.6204
       T(um) = 5
                       I(uA) = 40
                                               Tim(h) = 21.0482
       T(um) = 10
                       I (uA) = 40
                                               Tim(h) = 10.5241
       T(um) = 15
                       I(uA) = 40
                                               Tim(h) = 7.01605
       T(um) = 20
                                               Tim(h) = 5.44202
                       I(uA) = 38.6771
       T(um) = 25
                       I(uA) = 31.9297
                                               Tim(h) = 5.27363
       T(um) = 30
                       I(uA) = 27.1868
                                               Tim(h) = 5.16138
       T(um) = 40
                       I(uA) = 20.9599
                                               Tim(h) = 5.02105
       T(um) = 50
                                               Tim(h) = 4.93686
                       I(uA) = 17.0539
KE = 8 MeV
       T(um) = 1
                       I(uA) = 40
                                       Tim(h) = 378.985
       T(um) = 2
                       I(uA) = 40
                                       Tim(h) = 189.492
       T(um) = 5
                       I(uA) = 40
                                       Tim(h) = 75.7969
       T(um) = 10
                       I(uA) = 40
                                       Tim(h) = 37.8985
       T(um) = 15
                       I (uA) = 40
                                       Tim(h) = 25.2656
       T(um) = 20
                       I (uA) = 40
                                       Tim(h) = 18.9492
                                       Tim(h) = 15.1594
       T(um) = 25
                       I(uA) = 40
                       I (uA) = 40
                                       Tim(h) = 12.6328
       T(um) = 30
       T(um) = 40
                       I(uA) = 40
                                       Tim(h) = 9.47461
       T(um) = 50
                       I(uA) = 40
                                       Tim(h) = 7.57969
```