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1 Introduction and Discovery of the Ghost Beam

Ion production due to ionization of residual gas generally leads to negative e�ects on the lifetime and performance of
electron accelerators. These e�ects include photocathode damage and quantum e�ciency (QE) degredation due to ion back-
bombardment [1, 2], fast ion instabilities, especially in storage rings [3, 4], and ion trapping within the electron beam, which
leads to charge neutralization and beam loss [5]. There is extensive and ongoing research on reducing these e�ects through
ion clearing techniques such as introducing clearing electrodes [6] to the beamline and clearing gaps [7] in the electron beam.

The measurement of ion production has only been done in indirect ways, such as measuring the current on an ion
precipitator or clearing electrode, where in these cases, only the number of ions can be deduced, not their identity. A
recent discovery during an experiment at the Gun Test Stand (GTS) may lead to a method of measuring ion production
and characterizing the kinds of ions produced in electron accelerators. On 11/20/18, we ran a 100µA electron beam for 10
minutes at the Gun Test Stand (GTS) (shown below in Figure 1) with the parameters and dimensions listed in Table 1. Note
that the cathode and anode are within the gun chamber. After the 10 minute run, the electron beam was shut o� and a
YAG screen was immediately inserted downstream of the 2nd solenoid lens. A low intensity 100keV electron beam (i.e. with
a nominal current on the order of a few nA) was clearly present on the YAG screen, even though the incident laser on the
photocathode was o�! This �ghost beam� has been observed to only exist while the gun solenoid is on and only after a prior
electron beam run. The ghost beam is also long lasting; it has been shown to last for at least several hours.

Gun HV 100kV
Gun Solenoid Current 150A

Anode Bias +1kV
1st Solenoid Lens Current 0.732A
2nd Solenoid Lens Current 0.723A

Name Distance from Photocathode (m)
Anode 0.090

Gun Solenoid 0.122
1st Solenoid Lens 0.491
2nd Solenoid Lens 1.017

Table 1: Electron beam & beamline parameters and dimensions

Figure 1: Picture of the front section of the GTS beamline

The currently accepted theory as to why this ghost beam exists and why it is long lasting is the following: the real
electron beam ionizes residual gas, creating ions and secondary electrons. After the electron beam is turned o�, these ions
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and secondary electrons remain trapped within the solenoid lenses via the magnetic mirror e�ect. Eventually, these ions and
secondary electrons recombine and in doing so, emit photons that could reach the photocathode and produce the 100keV
electrons that we see on the screen. The hypothesis is that because these 100keV electrons can ionize more residual gas
molecules, the ghost beam is self-sustaining. The theory behind these processes is summarized below along with a discussion
on the veracity of this hypothesis and a proposal for a future experiment to test this theory.

In the below derivations, since it is di�cult to have a consistent notation when using derivations from a collection of
articles, each their own notations, I will follow the notation given in the article corresponding to each derivation and de�ne
the constants and variables accordingly.

2 Ionization of Residual Gas

While the real electron beam is on, residual gases such as H2 can be ionized by the high energy electrons. The ion
production rate (IPR) depends upon the densities of the residual gas ng, the density of the electron beam ne, the ionization
cross section σg, and the relative velocity of the electron beam βec:

dni
dt

= ngneσgβec (1)

It is assumed that the electrons are moving much faster than the residual gas molecules such that βec is essentially the
velocity of the electrons.

When ions are formed, they occupy the same volume as the electrons. Thus, Vg = Al where A is the cross sectional area
of the beam and l is its length. We can then rewrite eq. (1) as

1

Vg

dNi
dt

=
d (Ni/l)

dt
= ngσg (neAβec) (2)

where
d (Ni/l)

dt
is the IPR per unit length. The term in parentheses is, by de�nition, the electron number current Ie/e:

d

dt

(
Ni
l

)
= ngσg

(
Ie
e

)
(3)

Assuming the residual gas is ideal, we can relate ng to the residual gas pressure and temperature:

ng =
Pg
kBTg

(4)

Thus, the IPR per unit length is
d

dt

(
Ni
l

)
=
Pgσg
kBTg

(
Ie
e

)
(5)

The ionization cross section σg is derived from Bethe's theory [8, 9]:

σg =
8a20πIRA1

mec2β2
e

f (βe)

(
ln

2A2mec
2β2
eγ

2

IR
− β2

e

)
(6)

Numerically, this can be rewritten as:

σg
(
m2
)

=
1.872× 10−24A1

β2
e

f (βe)
[
ln
(
7.515× 104A2β

2
eγ

2
)
− β2

e

]
(7)

f (βe) =
Ii
Te

(
Te
Ii
− 1

)
=

2Ii
mec2β2

e

(
mec

2β2
e

2Ii
− 1

)
(8)

Here, A1 and A2 are empirical constants that depend on the gas species, γ =
(
1− β2

e

)− 1
2 is the Lorentz factor, Ii is the

ionization energy, and Te is the electron kinetic energy. Note that although eq. (5) does not explicitly contain the beam
energy, it is taken into account in the ionization cross section.
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To get a sense of magnitude, assume that the residual gas is made up of purely hydrogen gas molecules. Below are log-log

plots of ionization cross section σg vs. beam energy Te and ion production rate per unit length
d

dt

(
Ni
l

)
vs beam current

Ie, assuming a beam energy of 100keV.

Figure 2: Log-log plot of ionization cross section vs. beam energy for H2 gas.

Figure 3: Log-log plot of hydrogen ion production rate per unit length vs beam current for a 100keV electron beam

Using data from the 11/20/18 experiment, the electron beam current is I = 100µA and the beam energy was Te = 100keV.
The hydrogen gas has a pressure of Pg = 1.8 × 10−8Pa

(
= 1.3× 10−10torr

)
and is assumed to be at room temperature,

Tg = 293.15K. Using eq. (7), the ionization cross section for hydrogen gas is σH2
= 4.49×10−23m2. With kB = 1.38×10−23 J

K

and e = 1.60×10−19C, the hydrogen ion production rate per unit length using eq. (5) is
d

dt

(
NH+

2

l

)
= 1.25×105 H+

2 /(m*s).

3 Secondary Electron Production and Energy Distribution

When a residual gas molecule is ionized by an electron, an electron is released from the molecule. This ejected electron
is called a secondary electron. Note that during the course of ionization, the scattered and ejected electrons are only
distinguishable by their kinetic energies. The slower of the two electrons is called the secondary electron. The faster electron
is called the primary electron. A diagram showing the ionization process with the trajectories of the incident, scattered, and
secondary electrons is shown below in Figure 4.
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Figure 4: Diagram of the ionization process [10].

The total ionization process can be described by a triply di�erential cross section d3σ/dWdΩsdΩp where W is the
secondary electron energy and Ωs and Ωp are the solid angles of the secondary and primary electrons respectively. In order

to determine the energy distribution of secondary electrons, given by the singly di�erential cross section (SDCS)
dσ

dW
, one

must integrate the triply di�erential cross section over Ωs and Ωp. The total ionization cross section σi is thus obtained by
integrating over all secondary electron energies W [11]:

dσ

dW
=

x d3σ

dWdΩsdΩp
dΩsdΩp (9)

σi =

∫
dσ

dW
dW (10)

Let T be the incident electron energy, B be the binding energy of the secondary electron, and U =
〈
~p2
〉
/2m be the

average kinetic energy of electrons in the subshell (from which the secondary electron was ejected). Note that T ≥ B +W .
We can de�ne energy ratios t, w and u by

t =
T

B

w =
W

B

u =
U

B

Using these de�nitions, the SDCS in the Binary Encounter Dipole model is

dσ

dW
(T,W ) =

4πa20R
2N

B3 (t+ u+ 1)

[
1

(w + 1)
2 +

1

(t− w)
2 −

1

(w + 1) (t− w)

+
4u

3

(
1

(w + 1)
3 +

1

(t− w)
3

)]
(11)

where R = 13.6eV is the Rydberg energy, a0 is the Bohr radius, and N is the number of electrons in the orbital [11]. We can
rewrite eq. (11) as a series

dσ

dW
(T,W ) =

4πa20R
2N

B3 (t+ u+ 1)

3∑
n=1

Fn (t)

[
1

(w + 1)
n +

1

(t− w)
n

]
(12)
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After choosing appropriate choices for Fn (t), we have

dσ

dW
(T,W ) =

4πa20R
2N

B3 (t+ u+ 1)

[
(Ni/N)− 2

t+ 1

(
1

w + 1
+

1

t− w

)
+

(
2− Ni

N

)[
1

(w + 1)
2 +

1

(t− w)
2

]
+

ln t

N (w + 1)

df

dw

]
(13)

Ni ≡
∞w

0

df (w)

dw
dw

where the term
df

dw
comes from determining F3 (t) in the asymptotic case of t� w. Using values for B, U , N , and

df

dw
for H2

gas given in Ref. [12], we can plot
dσ

dW
(eq. (13)) as a function of secondary electron energy W (i.e. the energy distribution

of secondary electrons) for an incident electron energy of T = 100keV, as shown in Figure 5.

Figure 5: Log-Log Plot of the SDCS
dσ

dW
as a function of W , for T = 100keV using eq. (13).

4 Electron-Ion Trapping via the Magnetic Mirror E�ect

4.1 Magnetic �eld map

A plot of the longitudinal z-component of the magnetic �eld of the gun solenoid as a function of z is shown below in
Figure 6 using magnetic �eld maps of the gun solenoid and solenoid lenses with their respective strengths from Table 1.
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Figure 6: The z-component of magnetic �eld experienced by electrons along the central axis of the accelerator. The y-axis
is in Tesla and the x-axis is in meters.

The longitudinal magnetic �eld is clearly dominated by the �eld from the gun solenoid. The two dips at z ≈ 0.5m and
z ≈ 1m re�ect the solenoid lenses having steel shielding that absorbs magnetic �elds due to its high permeability. Note that
even though the solenoid lenses have non-zero current, the �elds produced by these solenoids is negligible. Electrons and ions
with su�ciently low energy can be trapped within these magnetic �wells� via the magnetic mirror e�ect due to the sharp
gradients in magnetic �eld at either end of the wells, as explained below.

4.2 Magnetic Mirror E�ect

Charged particles in the presence of a uniform longitudinal magnetic �eld that is axially symmetric will circulate about
the central axis at the Larmor radius:

rL =
mv⊥
qB

(14)

wherem and q are the mass and charge the particle, B is the magnetic �eld strength and v⊥ is the orbital velocity. The
particle also has a magnetic moment µ:

µ =
1

2

mv2⊥
B

(15)

It can be shown that the magnetic moment µ is an invariant of the motion [13]. Thus, if the uniform longitudinal magnetic
�eld were increasing or decreasing linearly in z (but still uniform transversely), then the transverse velocity v⊥ of a charged
particle approaching higher magnetic �eld will increase. Since the magnetic �eld cannot perform work, the energy of the
particle must be constant. Breaking out the kinetic energy of the particle into its transverse and parallel (to the magnetic
�eld) components:

dE

dt
=

d

dt

(
1

2
mv2⊥ +

1

2
mv2‖

)
= 0 (16)

Thus, if v⊥ increases, v‖ must decrease and the electron slows down in z. So long as the magnetic �eld is of su�cient strength,

the electron will eventually re�ect o� of the magnetic �eld and mirror. We can de�ne a pitch angle, given by sin θ =
v⊥
v
,

above which the electron will always mirror. Using the invariance of µ, the threshold pitch angle θ is given by

sin2 θm =
B1

B2
(17)

where B2 is the maximum magnetic �eld with B2 > B1 and θ ∈ [0◦, 90◦] [13]. So long as θ > θm, the electron will always
mirror. If two solenoids are set up such that θ is above both threshold pitch angles, then the electron is trapped between them.
Note that these traps are, in general, not stable, as we have neglected coulomb interactions, which can either bring electrons
into or knock electrons out of the threshold for mirroring. For a complete derivation of these equations, see Appendix on
page 11.
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4.3 Thresholds for Trapping

To get a sense of the magnitude of the traps (i.e. how high the �walls� of the trap are), lets plug in numbers using the
magnetic �eld map shown in Figure 6. At lens 1, located at z ≈ 0.5, the z-component of magnetic �eld is B0.5 ≈ 2.7×10−3T.
The upstream magnetic �eld maximum, located at z ≈ 0.21m, is B0.21 ≈ 0.13T. The downstream maximum, located at
z ≈ 0.61m is B0.61 ≈ 2.3×10−2T. At lens 2, located at z ≈ 1.03m, the magnetic �eld is B1.03 ≈ 7.8×10−4T. The downstream
maximum magnetic �eld at z ≈ 1.13m is B1.13 ≈ 3.2 × 10−3T and the upstream maximum magnetic �eld at z ≈ 0.9m is
B0.9 = 7.4 × 10−3T. It is important to note that the magnetic �eld wells at the solenoid lenses are not due to the lenses
themselves, but rather due to the steel shielding surrounding the lenses, which sharply lowers the magnetic �eld at the edges
of the solenoid lenses. The net magnetic �eld contributions from the solenoid lenses themselves are negligible compared to
that of the gun solenoid.

The threshold pitch angle for each side of both wells is given by eq. (17). However, it is easier to think in terms of particle
kinetic energy T rather than pitch angle θ, thus we can derive an equation for T in terms of θ. However, a pitch angle does
not uniquely de�ne T . Instead, we can derive a range of kinetic energies using the fact that a particle cannot have a larger
Larmor radius than the radius of the beam pipe R = 0.034m. The maximum transverse velocity would be the transverse
velocity when the Larmor radius equals the beam pipe radius at the center of the well:

v⊥,max =
qB0.5R

m
(18)

The velocity of the particle is given by v =
v⊥

sin θ
and so the maximum kinetic energy is Tmax = (γ − 1)mc2 where γ =(

1− v2

c2

)− 1
2

. From these equations, we can tabulate the threshold pitch angles and maximum kinetic energies for electrons

and H+
2 ions below in Table 2.

Electrons/H+
2 ions Electrons H+

2 ions

Threshold θ for Lens 1, upstream (B0.5 → B0.21) 8.29◦ Tth for Lens 1, upstream (B0.5 → B0.21) 39.9keV 9.725eV

Threshold θ for Lens 1, downstream (B0.5 → B0.61) 20.0◦ Tth for Lens 1, downstream (B0.5 → B0.61) 6.5keV 1.713eV

Threshold θ for Lens 2, upstream (B1.03 → B0.9) 19.0◦ Tth for Lens 2, upstream (B1.03 → B0.9) 582eV 0.159eV

Threshold θ for Lens 2, downstream (B1.03 → B1.13) 30.0◦ Tth for Lens 2, downstream (B1.03 → B1.13) 248eV 0.0675eV

Table 2: Threshold pitch angles θ and maximum kinetic energies T for electrons and H+
2 ions at each solenoid lens

There are two important notes to keep in mind regarding Table 2. First, note that the upstream maximum for lens 2 at
z ≈ 0.9m is not really a maximum, as the magnetic �eld is higher upstream of z = 0.9m. Thus, electrons with certain pitch
angles at the center of lens 2 moving towards lens 1 may pass z = 0.9m before turning around. These electrons would have
a smaller Larmor radius than those that turn around at z = 0.9m. Also, note that the maximum of all Tmax calculations
above is 39.9keV, meaning that nowhere can 100keV electrons from the real electron beam or the ghost electron beam get
trapped within the solenoid lenses. Thus, electrons that get trapped must be either ions or secondary electrons.

5 Radiative Recombination

5.1 Radiative Recombination Cross Section

When electrons and ions are within close proximity of each other and have low relative velocities, there is a probability
that the electron can recombine with the positive ion and emit a photon in a process known as radiative recombination,
which can be described by the following process :

AZ+ + e− → A(Z−1)+ (n, l) + γ (19)

where the incident electron e− recombines with a bare ion AZ+ into an orbital vacancy(n, l) and in doing so, loses energy in
the form of a photon γ. The energy of the photon is Eγ = E + Enl where E is the energy of the incident electron and Enl
is the energy of an electron in A in the nl state. In other words, all excess energy in the recombination is taken up by the
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photon in RR. The RR cross section formula as a function of E for a recombining electron entering state n given by Kramers
is [14]

σKn (E) =
32π

3
√

3
α3a20

Z4E2
0

nE (n2E + Z2E0)
(20)

Here, α is the �ne structure constant, a0 is the Bohr radius, E0 is the Rydberg constant, and Z is the atomic number of

the target atom. Note that
32π

3
√

3
α3a20 ≈ 210.5 barn. The total recombination cross section is given by summing σn over all

possible states:

σtot (E) =

∞∑
n=1

σn (E) (21)

In the case that E � Z2E0 (i.e. the electrons have energies on the order of a few eV or less), we can write σtot (E) explicitly:

σtot (E) =
32π

3
√

3
α3a20ξ

2
[
b0 + ln ξ + b1/ξ

2/3 + b2/ξ
4/3 + (b3 − b4 ln ξ) /ξ2

]
(22)

where ξ =
(
Z2E0/E

)1/2
and b0 = 0.161, b1 = 0.518, b2 = 0.074, b3 = 0.068, and b4 = 0.046. The condition that E � Z2E0

is true in our case of trapped ions recombining with secondary electrons, which have energies on the order of a few eV.
Pajeck and Schuch [14] derived a similar formula for the total RR cross section for low energy electrons (E � Enl):

σtot (E) =
32π

3
√

3
α3a20

(
Z2E0/E

) [
γ − s (nmax) + ln

(
Z2E0/E

)1/2]
(23)

where γ ≈ 0.577 is the Euler constant (not to be confused with the photon γ from eq. (19)) and s (nmax) =

nmax∑
n=1

1− g (n)

n
.

Values for g (n) are given in [14] for di�erent values of n. For H2 gas, nmax = 2. Below in Figure 7 is a log-log plot of σtot
as a function of E for electrons recombining with H+

2 ions.

Figure 7: Log-log plot of σtot (E) as a function of E for recombination with H+
2 ions

5.2 Radiative Recombination Rate

The total radiative recombination rate, αtot is the average of the product of the total RR cross section mutiplied by the
relative electron velocity for a given electron velocity distribution f :

αtot =
w
vσtot (v) f (~v) d3v (24)

where ~v =
(
v‖, v⊥

)
. Assuming a Maxwellian distribution of electron velocities of the form

f (~v) =
(m/2π)

3/2

kT⊥
(
kT‖

)1/2 exp

(
−mv

2
⊥

2kT⊥
−
mv2‖

2kT‖

)
(25)
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where m is the electron mass (really the electron rest mass energy mec
2) and kT‖ and kT⊥ are electron temperatures in the

longitudinal and transverse directions respectively, plugging in eqs. (23) and (25) into (24) and integrating yields [14]

αtot = α0Z
2

(
E0

kT⊥

) 1
2
[

3

2
γ − s (nmax) + ln

(
Z2E0/kT⊥

)1/2
+D (t)

]
G (t) (26)

α0 =

(
32π

3
√

3

)
α3a20 × 4

√
E0

2πme

G (t) =

√
t+ 1

t
arctan

(√
t
)

D (t) =
1

arctan
√
t

√
tw

0

ln
(
1 + z2

)
1 + z2

dz

t =
kT⊥ − kT‖

kT‖

Note that eq. (26) tacitly assumes that the recombining electron energy is much smaller than the binding energy (i.e.
E � Enl). In the case of H2 and considering Figure 5, this assumption is valid. Below in Figure 8 is a plot of αtot as a
function of electron temperature kT⊥.

Figure 8: Log-log plot of αtot vs. kT⊥

6 Discussion, Future Work, and Connection to Thesis

From the above calculations, we see that the question is not about whether the ghost beam exists. The question is really
about how long the ghost beam lasts and can it be self-sustaining. However, in order to determine how long the ghost
beam lasts, we would have to integrate all of these processes (i.e. the ionization cross section and rate, secondary electron
di�erential cross section, and the recombination cross section and rate) for each electron-ion pair and iterate over time until
the ghost beam disappears. This integration would be impractical to do analytically, since each of the processes is correlated
and depends on the densities of the electrons, ions, and residual gas molecules at a given time. Also, there are many di�erent
ionization and recombination reaction channels that electrons and ions can take. That is, depending on the atom, there are
many di�erent ways that an electron can be ejected from or recombine into an atom and each way has its own cross section.
Thus, in order to determine the lifetime of the ghost beam, we can use a simulation package such as GPT or IBSimu to
simulate these processes, iterate them over time, and record the lifetime of the ghost beam.

In order to test this theory, two viewports will be added to the part of the beamline within the gun solenoid, shown
below in Figure 9. Note that the gun solenoid, which is not shown in either diagram, surrounds the spool (refer to Figure
1). The angled viewport will look for light emission due to recombination of electrons and ions trapped due to the E-�eld of
the anode and B-�eld of the gun solenoid. The second, perpendicular viewport will be used to look for light in an arti�cial
trap. That is, we can surround the perpendicular viewport with steel shielding, which will absorb the magnetic �eld from the
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gun solenoid and create a magnetic well, like the steel shielding surrounding the solenoid lenses. We were unable to install a
viewport that could measure potential light emission within either of the two solenoid lenses.

Figure 9: Diagram of location of spool (without viewports) relative to the �rst solenoid lens (above) and a schematic showing
the locations of the two viewports on the spool (below).

Once the viewports are added, we can measure the intensity and wavelength of light emission using a spectral analyzer
(or similar device). Any measured light would indicate that there are ions and electrons recombining and the wavelength of
the measured light will be characteristic of the identity of the ion, as every atom has characteristic spectral lines associated
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with it. Even more, it would add evidence that ions do exist in the accelerator, which would help support the theory of
ions damaging of the photocathode via ion back-bombardment. In a sense, measuring light from the ghost beam can be an
indirect way of measuring ion production in an accelerator. In my thesis, I will be studying the mitigation of the harmful
e�ects of ion production, such as ion back-bombardment of a photocathode, at CEBAF.
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7 Appendix: Magnetic Mirror E�ect

Following a lecture by Peter Gallager [13], suppose we have a charged particle in a relatively uniform magnetic �eld that
varies in magnitude with z, as is the case with two coaxial solenoids. In cylindrical coordinates we can write the components
of the magnetic �eld:

~B = Br r̂ +Bθ θ̂ +Bz ẑ (27)
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In the case of coaxial solenoids, ~B has azimuthal symmetry, thus Bθ = 0. From ∇ · ~B = 0, we can obtain Br:

∇ · ~B = 0

1

r

∂

∂r
(rBr) +

∂Bz
∂z

= 0

∂

∂r
(rBr) = −r ∂Bz

∂z

rBr = −
rw

0

r′
∂Bz
dz

dr′

If we assume that
∂Bz
∂z

is known at r = 0 and does not vary signi�cantly with r (a valid assumption in our case), then

rBr ≈ −
1

2
r2
[
∂Bz
∂z

]
r=0

Br = −r
2

[
∂Bz
∂z

]
r=0

(28)

Now, in the absence of electric �elds, the Lorentz force is

~FB = q~v × ~B

= q
[
(vθBz − vzBθ) r̂ − (vrBz − vzBr) θ̂ + (vrBθ − vθBr) ẑ

]
Since Bθ = 0,

~FB = q
[
vθBz r̂ + (vzBr − vrBz) θ̂ − vθBr ẑ

]
(29)

For the magnetic mirror, we are mainly concerned with Fz. Using (28), we have:

Fz = −qvθBr

=
qrvθ

2

∂Bz
∂z

Averaging over one Larmor period, we have

Fz,avg = ±qrLv⊥
2

∂Bz
∂z

where rL =
mv⊥
|q|B

is the Larmor radius. Plugging this in:

Fz,avg = −1

2

mv2⊥
B

∂Bz
∂z

But
1

2

mv2⊥
B

= µ, which is the magnetic moment of the particle. Thus,

Fz,avg = −µ∂Bz
∂z

(30)

Equation (30) is the �mirror force�. If we consider a line element ds along B, then we can extend Fz,avg into 3D:

F‖ = −µdBz
ds

= −µ∇‖B

F‖ is the mirror force parallel to B. Now,

F‖ = m
dv‖

dt
= −µdB

ds

mv‖
dv‖

dt
= −µv‖

dB

ds
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Now,
d

dt

(
1

2
mv2‖

)
=
m

2

d

dt

(
v2‖

)
=
m

2

(
2v‖

dv‖

dt

)
= mv‖

dv‖

dt
, so

d

dt

(
1

2
mv2‖

)
= −µv‖

dB

ds

Since v‖ =
ds

dt
,

d

dt

(
1

2
mv2‖

)
= −µds

dt

dB

ds
= −µdB

dt

Since the particle's energy is conserved in the absence of electric �elds,
dE

dt
=

d

dt

(
1

2
mv2‖ +

1

2
mv2⊥

)
=

d

dt

(
1

2
mv2‖ + µB

)
=

0→ d

dt

(
1

2
mv2‖

)
= − d

dt
(µB). Thus,

µ
dB

dt
− d (µB)

dt
= 0

µ
dB

dt
−
(
B
dµ

dt
+ µ

dB

dt

)
= 0

B
dµ

dt
= 0 (31)

Since B 6= 0 by assumption,
dµ

dt
= 0, so µ is a constant of motion.

Let's apply this to the case of two coaxial solenoids. Suppose we have a charged particle between two coaxial solenoids
that are relatively close together. Let the z-axis be the along the central axis of the solenoids with z = 0 at their midpoint. At
two di�erent locations z1 and z2, the strength of the magnetic �eld is B1 and B2 respectively, and the particle has transverse
velocities v⊥1 and v⊥2 respectively. (Note that since there is azimuthal symmetry and we assume that the particle is close
enough to the axis to feel the e�ects of the solenoidal magnetic �elds, we only need to specify their z-component). Invoking
the invariance of µ, we have

µ1 = µ2

mv2⊥1
2B1

=
mv2⊥2
2B2

v2⊥1 = v2⊥2
B1

B2
(32)

Also, since
dE

dt
= 0,

d

dt

(
1

2
mv2‖ +

1

2
mv2⊥

)
= 0

1

2
mv2‖ +

1

2
mv2⊥ = ε

v2‖ + v2⊥ =
2ε

m
(33)

where ε is a constant. Suppose the particle moves from z1 to z2. If B1 < B2, then in order for equation (32) to be true,
v⊥2 > v⊥1, meaning that the particle's transverse velocity increases. By equation (33), this means that v‖ decreases and the
particle slows down. Solving (33) for v2⊥ and inserting it into (32), we have

2ε

m
− v2‖1 =

(
2ε

m
− v2‖2

)
B1

B2

v2‖1 =
2ε

m
−
(

2ε

m
− v2‖2

)
B1

B2

v2‖1 =
2ε

m

(
1− B1

B2

)
+ v2‖2

B1

B2
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The case when v‖2 = 0 corresponds to the case when the particle's velocity is solely transverse at z2, i.e. the particle has no
z-component of velocity. In this case,

v2‖1 =
2ε

m

(
1− B1

B2

)
where B1 < B2 by assumption so that the r.h.s. is positive. De�ne sin θ =

v⊥
v

where θ can be thought of as the pitch angle

of the particle. Note that θ ∈ [0◦, 90◦]. From (32),Equation (34) denotes the threshold for mirroring.

sin2 θ =
B1

B2
(34)

Particles can mirror so long as sin2 θ ≥ B1

B2
, i.e. θ is large and B2 > B1 However, if θ is too small, the particle slows down,

but does not mirror. v‖ remains constant when B2 = B1 and increases when B2 < B1; it cannot decrease to zero.

De�ne Bm as the maximum magnetic �eld and Rm as the mirror ratio Rm =
Bm
B1

. The smallest value that θ can be with

a particle mirroring is given by

sin2 θm =
B1

Bm
=

1

Rm
(35)

So long as θ > θm, the particle will mirror. Particles with θ ≤ θm escape the mirror.
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