e^+ Collection systems

Sami Habet

IJCLab.

JLab.

October 2022

Sami Habet

(IJCLAB & JLab)

October 2022

2 Simulation

- polarized mode
- Unpolarized mode

3 QWT VS AMD

Sami Habet

< 4 → <

2 Simulatio

- opolarized mode
- Unpolarized mode

3 QWT VS AMD

4 Conclusion

・ロト ・日下・ ・日下

- The QWT consist of two magnetic field region.
- The first solenoid has a strong magnetic field B_1 over a length L_1
- The second solenoid has a weaker magnetic field B_2 over a length L_2
- The phase space acceptance for a QWT is calculated from the global transfer matrix:

$$\begin{pmatrix} X \\ P_X \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} X_0 \\ P_{X_0} \end{pmatrix}$$

• From the previous matrix we can get the phase space transport over a QWT:

$$XX^{*} + \left(\frac{2}{eB_{2}}\right)^{2} P_{X} P_{X}^{*} = \left[\cos^{2} \chi_{1} + \left(\frac{B_{1}}{B_{2}}\right)^{2} \sin^{2} \chi_{1}\right] x_{0} x_{0}^{*} \qquad (1)$$
$$+ \left[\left(\frac{2}{eB_{1}}\right)^{2} \sin^{2} \chi_{1} + \left(\frac{2}{eB_{2}}\right)^{2} \cos^{2} \chi_{1}\right] p_{x_{0}} p_{x_{0}}^{*}$$
$$+ \frac{2}{eB_{1}} \sin \chi_{1} \cos \chi_{1} \left[1 - \left(\frac{B_{1}}{B_{2}}\right)^{2}\right] \left(x_{0}^{*} p_{x_{0}} + x_{0} p_{x_{0}}^{*}\right)$$

• Where $X^* \equiv x + iy$ and $P_X^* \equiv p_x + ip_y$ and.

5/27

Jefferson Lab

• Using $\chi_1{=}\pi/2$, the previous formula is reduced to :

$$\left(\frac{eB_2}{2}\right)^2 XX^* + P_X P_X^* = \left(\frac{eB_2}{2}\right)^2 (x^2 + y^2) + (p_x^2 + p_y^2) = Cte$$

• Which can be expressed in a cylindrical coordinate system as:

$$\left[\frac{B_1}{B_2}\right]^2 r_0^2 + \left[\frac{2}{eB_1}\right]^2 \left[P_{r_0}^2 + \frac{P_{\phi_0}}{r^2}\right] = \text{Cte}$$

• The positron emitted at the converter with phase space coordinates (X_0, P_{X_0}) are transmitted only if :

$$XX^* \leq a^2$$

Thus we can write:

$$\operatorname{Cte} - \left(\frac{2}{eB_2}\right)^2 P_X P_X^* \le a^2$$
Jefferson Lab

• At $P_{r_0} = P_{\phi_0} = 0$ we can define the QWT radial acceptance:

$$r_0^{max} = rac{B_2}{B_1}a$$

• Similarly, the radial momentum acceptance is defined by:

$$P_{r_0}^{max} = \frac{eB_1a}{2}$$

• At a given momentum, The QWT volume acceptance is maximized:

$$\frac{dV(\chi_1)}{d\chi_1} = 0$$

$$p_m = \frac{eB_1L_1}{n\pi}$$

Sami Habet

(IJCLAB & JLab)

- For $B_1 = 2.5 T$ and $B_2 = 0.5 T$ and $p_m = 60 \text{ MeV/c}$, the optimal length is set at $L_1 = 25 \text{ cm}$.
- The radial acceptance for an aperture radius a = 3 cm: :

$$r_0^{max} = \frac{B_2}{B_1}a = 1.5cm.$$

• The radial momentum acceptance is set at :

$$\theta_{r_0}^{max} = \frac{eB_1a}{2p_m} = 0.18 \ [rad]$$
(2)

Jefferson Lab

- What about *L*₂ ?
- Our goal is to decrease the initial transverse momentum meaning we want to rotate the (x-x') phase space using π/2 rotation.

• The solenoid transfer matrix is defined as :

 $\begin{pmatrix} \cos^2(k \ l) & \frac{\sin(k \ l) \cos(k \ l)}{k} & \sin(k \ l) \cos(k \ l) & \frac{\sin^2(k \ l)}{k} \\ -k \sin(k \ l) \cos(k \ l) & \cos^2(k \ l) & -k \sin^2(k \ l) & \sin(k \ l) \cos(k \ l) \\ \sin(k \ l) (-\cos(k \ l)) & -\frac{\sin^2(k \ l)}{k} & \cos^2(k \ l) & \frac{\sin(k \ l) \cos(k \ l)}{k} \\ k \sin^2(k \ l) & \sin(k \ l) (-\cos(k \ l)) & -k \sin(k \ l) \cos(k \ l) & \cos^2(k \ l) \end{pmatrix}$

• Where
$$k = \frac{B}{2B\rho}$$

• Using the twiss matrix transformation :

$$\begin{bmatrix} \beta_{exit} \\ \alpha_{exit} \\ \gamma_{exit} \end{bmatrix} = M_{Twiss} \begin{bmatrix} \beta_0 \\ \alpha_0 \\ \gamma_0 \end{bmatrix}$$

Jefferson Lab

• From the Solenoid matrix, the Twiss transport matrix is calculated:

$$\begin{bmatrix} \beta_{exit} \\ \alpha_{exit} \\ \gamma_{exit} \end{bmatrix} = \begin{pmatrix} -\frac{4 \text{ a0 BRo sin}\left(\frac{BI}{2 \text{ BRo}}\right)\cos^3\left(\frac{BI}{2 \text{ BRo}}\right)}{B} + \frac{4 \text{ BRo}^2 \text{ GO sin}^2\left(\frac{BI}{2 \text{ BRo}}\right)}{B^2} + b0 \cos^4\left(\frac{BI}{2 \text{ BRo}}\right) \\ a0 \left(\cos^4\left(\frac{BI}{2 \text{ BRo}}\right) - \sin^2\left(\frac{BI}{2 \text{ BRo}}\right)\cos^2\left(\frac{BI}{2 \text{ BRo}}\right)\right) + \frac{B \text{ b0 sin}\left(\frac{BI}{2 \text{ BRo}}\right)\cos^2\left(\frac{BI}{2 \text{ BRo}}\right)}{2 \text{ BRo}} - \frac{2 \text{ BRo GO sin}\left(\frac{BI}{2 \text{ BRo}}\right)}{B} \\ \frac{a0 B \sin\left(\frac{BI}{2 \text{ BRO}}\right)\cos^2\left(\frac{BI}{2 \text{ BRO}}\right)}{BRo} + \frac{B^2 \text{ Osin}^2\left(\frac{2BI}{2 \text{ BRO}}\right)}{4 \text{ BRO}^2} + 60 \cos^4\left(\frac{BI}{2 \text{ BRO}}\right)} \\ \end{pmatrix}$$

• Where $L_2 = I$ is the length of the second solenoid.

- a₀, b₀ and G0 are thi initial Twiss parameters calculated at the exit of the 1st solenoid.
- To get $\pi/2$ rotation, we want to get $\alpha_{\textit{exit}} = \mathbf{0}$ and $\beta_{\textit{exit}} = \mathbf{Max}$
- From the β_{exit} formula, we get the maximum value at I = 8.7 m

11 / 27

son Lab

2 Simulation

- opolarized mode
- Unpolarized mode

3 QWT VS AMD

4 Conclusion

Sami Habet

イロト イヨト イヨト イヨ

Simulation : QWT initial parameters

 For the Polarized mode we have set the central momentum at 60MeV/c.

xp [rad]

• The QWT parameters are

•
$$B_1 = 2.5 \text{ T}$$

- L₁ = 0.25 m
- B₂ = 0.5 T
- $l = L_2 = 8.7 \text{ m}$
- $r_0^{max} = 0.0015 \text{ m}$
- $\theta_0^{max} = 0.18$
- Only e^+ contained inside the accepted ellipse will be transmitted at the exit of the QWT.

Sami Habet

(IJCLAB & JLab)

QWT : Transverse phase space rotation

QWT: Transverse phase space rotation $L_2 = 2.45 m$

Sami Habet

ire de Physique

(IJCLAB & JLab)

October 2022 15 / 27

QWT : Sigmas evolution

Sami Habet

QWT : Twiss functions

Sami Habet

October 2022

QWT : Longitudinal plane

Sami Habet

October 2022

< 1 k

Jefferson Lab

AMD : initial parameters

- Using the same formulas, we can define the acceptance space phase parameters for the AMD:
 - The radial acceptance : $r_0^{max} = \sqrt{\frac{B_2}{B_1}}a = 0.003 m.$
 - To get the transverse momentum acceptance, we let x_0 and $p_{y0} = 0$, then we get: $p_{x0}^{max} = \frac{1}{2}ea\sqrt{B_2B_1} = 0.04 [rad]$
- To get a fair comparison, I will be using the same momentum cut used previously for the QWT case.

AMD : Transverse phase space rotation

Sami Habet

(IJCLAB & JLab)

October 2022

AMD : Longitudinal plane

• The bunch length increase significatively in both cases : QWT and Jefferson Lab

```
Sami Habet
```

(IJCLAB & JLab)

October 2022

• We shift the central momentum to 20 MeV/c, therefore the acceptances parametres will change too:

$$p_m = \frac{eB_1L_1}{n\pi}$$

- leading to $L_1 = 11$ cm, $B_1 = 1.8$ T, $B_2 = 0.2$ T
- The radial acceptance for the unpolarized mode : $r_0^{max} = 0.003 m$
- The angular acceptance : $\theta_0^{max} = 0.39 \ [rad]$

۲

Jefferson Lab

QWT : Tranverse phase space rotation

Sami Habet

(IJCLAB & JLab)

October 2022

< 行

2 Simulatio

- opolarized mode
- Unpolarized mode

4 Conclusion

・ロト ・回ト ・ヨト ・ヨ

Parameters	QWT	AMD
Radial accetance r_0^{max} [m]	0.0015	0.003
Angular acceptance [rad]	0.18	0.04
$p_{e^+} MeV/c$	[57-63]	[57-63]
1 st solenoidLength[m]	0.25	0.75
2 nd solenoidlength[m]	8.7	8.4
Number of e ⁺	7025	7025
Yield e^+/e^-	0.001405	0.001405
Transmission %	99.91	100
Longitudinal σ_t [s]	$1.06 10^{-11}$	$4.66 \ 10^{-12}$

Sami Habet

2 Simulatio

- opolarized mode
- Unpolarized mode

3 QWT VS AMD

Sami Habet

(IJCLAB & JLab)

October 2022

・ロト ・回ト ・ヨト ・ヨ

- The radial acceptance is larger for the adiabatic device
- The angular acceptance is larger for the QWT
- The momentum acceptance is much larger for the adiabatic device. As a consequence, the accepted yield is higher
- The AMD is widely used with respect to high positron yield.
- The QWT may be interesting, if the yield is sufficient, to get a very clean beam, and to restrict the central momentum for easier transport.

