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When using the continuous spectrum of Bremsstrahlung photon beam
to study photo-nuclear reactions, the measured quantity is a yield. The
yield (number of interactions) is a convolution of the cross section with the
Bremsstrahlung spectrum:

y(E) =

∫ E

Threshold

Nγ(E, k)σ(k)dk, (1)

where E is the electron beam kinetic energy, Nγ(E, k) is the number of
gammas per energy unit which depends on the electron energy and the
gamma energy. The continuous range of photon energies means that the
cross section is not measured directly, instead it must be unfolded from the
measured yields.

An integral equation of this form is known as Volterra Integral Equation
of the First Kind. Mathematically the problem is one of numerical solution
of the yield integral equation and σ(k) is the function to be solved for. One
way to solve this equation is to use the Method of Quadratures (a method
for constructing an approximate solution of an integral equation based on
the replacement of integrals by finite sums). First the yields are measured
at E = E1, E2, . . . , En where Ei − Ei−1 = ∆, i = 2, . . . , n. Then,

y(Ei) =

∫ Ei

Threshold

Nγ(Ei, k)σ(k)dk ≈

i
∑

j=1

Nγ(Ei,∆, kj)σ(kj), (2)

where Nγ(Ei,∆, kj) is the number of gammas in the energy bin of width ∆.
Equation 2 is a set of linear equations which can be written in the matrix

form:
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This matrix equation can be solved with matrix inversion.
Equivalently, the solution to Equation 2 can be written:

σi =
1

Nii



yi −

i−1
∑

j=1

(Nijσj)



 . (4)

The error propagation of Equation 4 is given by:

(

dσi

σi

)2

=

[

(dyi)
2 +

∑i−1

j=1
(Nijdσj)

2

]

[

yi −
∑i−1

j=1
(Nijσj)

]2
. (5)

For mono-chromatic photon beam, Equation 5 reduces to:

(

dσi

σi

)2

=

(

dyi

yi

)2

=
1

yi

. (6)

Initially, the above unfolding method known as Penfold-Liess unfold-
ing ([1]) (aka the Inverse-Matrix Method) gave unreliable results (see for
example [2] and Figure 1) because (in the sixties and seventies) the un-
folding procedures have been often considered in isolation from the photon
energy spectrum of the bremsstrahlung beam used experimentally. At that
time, experimentalists used the Schiff theoretical formula ([3]) to calculate
Nij = ∆NSchiff(Ei, kj−∆/2). Findlay proposed ([4]) that a simple modifica-
tion to Nij prevents the generation of spurious results. He replaced k−∆/2
by k − λ∆ where λ is a parameter determined by considering the energy
spread of the electron beam and the energy loss of the electron beam in the
radiator. Findlay’s modification was successfully demonstrated to produce
correct cross sections in ([5], see Figure 2, [6]).

These days, there are very accurate Monte-Carlo simulations, Nij can
be calculated for each specific experimental conditions without the need to
use theoretical formula. This removes problems in the unfolding related to
the knowledge of Nij.

However, this is not the only reason that may cause Penfold-Liess un-
folding to fail. Careful inspection of Equation 5 reveals that statistical errors
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Figure 1: Comparison of the 141Pr(γ, n) cross sections. Cook and Can-
nington were done with Bremsstrahlung beams. The correct cross section
by Bramblett (dashed line) was done with a monochromatic gamma beam
from positron annihilation in flight.

.

of the measured yields play a role in two ways. First, the statistical errors
add up as can be seen in the numerator of the right hand side of Equation
5. Although σ1 and probably σ2 will be very closed to their real values, the
remaining cross section data points will start to oscillate. Second, the de-
nominator of the difference of two large numbers and thus will enhance the
error in the cross section since the difference will be a smaller number. In-
deed, having a very steep cross section is an advantage here, since it reduces
the second term in the denominator and give a denominator with large num-
ber. To determine the required statistical error for each yield measurement,
the steepness of the cross section must be taken into account. A relatively
flat cross section requires very accurate yield measurements to be able to
successfully unfold the cross section.

Indeed, the 16O(γ, α)12C cross section is very steep (shown in Figure
3) and only photons near the endpoint contribute to the yield for each
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Figure 2: Photofission of 232Th near threshold. Solid circles present data
from [5] with Bremsstrahlung beam and lines data with tagged photon beam.

beam energy, see Figure 4. Similar arguments show that it is beneficial to
maximize the number of gammas near the endpoint relative to the number of
gammas at lower gamma energies, Nii/Nij , j = 1, . . . , i− 1. Figure 5 shows
the Schiff Bremsstrahlung cross section for 8.5 MeV elctron beam kinetic
energy. This is one reason, among many others, why we choose to run with
a very thin Bremsstrahlung radiator. Figure 6 shows the Bremsstrahlung
yield for three different radiator thicknesses.

As was discussed above, poor statistics will cause the unfolded cross sec-
tion to oscillate as a function of photon energy especially at energies above
the giant resonance energy where the cross section is flat or decreasing.
These cross sections are unacceptable physically and smoothing must be
used. Under the assumption of the cross section smoothness, the deconvo-
lution method is known as the Regularization Method. There are several
kinds of regularization methods such as Cook’s Least Structure Method [7],
the Second Difference Method [8] and Tikhonov Regularization [9].

Another deconvolution method is called the Photon Difference Method
[10]. In this method a nearly mono-energetic photon spectrum can be con-
structed artificially by taking an algebraic sum of three Bremsstrahlung
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Figure 3: The cross section of 16O(γ, α)12C.
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Figure 4: The probability of Bremsstrahlung photons to undergo the inter-
action 16O(γ, α)12C.
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Figure 5: Schiff Bremsstrahlung cross section for a Cu radiator.

spectra with consecutive endpoint energies:

φM(Ei) = φSchiff(Ei) − a φSchiff (Ei−1) + b φSchiff(Ei−2), (7)

where φSchiff(Ei) is the Schiff Bremsstrahlung spectrum with endpoint en-
ergy Ei and the parameters a and b are both positive and chosen such that
φM(Ei) represent a mono-energetic photon spectrum. An example is shown
in Figure 7 where:

φM(8.5) = φSchiff(8.5) − 1.35 φSchiff(8.4) + 0.30 φSchiff(8.3). (8)

A differential yield spectrum can be constructed artificially by using the
same linear combination of the corresponding yields. Then, the photo-
nuclear cross section is simply the ratio of this differential yield to the cor-
responding mono-energetic photon flux.
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Figure 6: Bremsstrahlung yield for three different radiator thicknesses.
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Figure 7: Mono-energetic photon spectrum constructed artificially by taking
an algebraic sum of three Bremsstrahlung spectra with consecutive endpoint
energies.
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