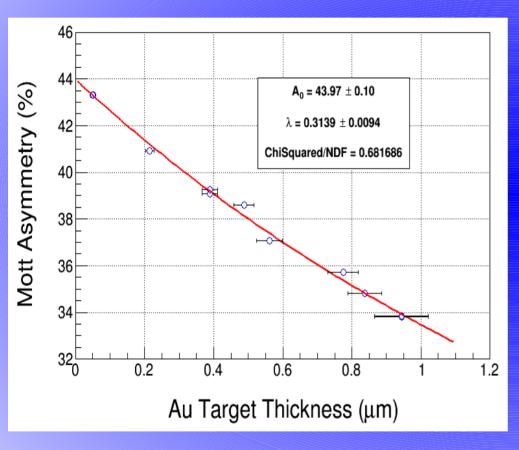
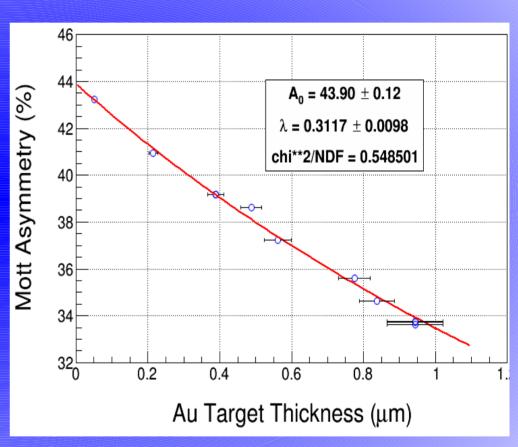
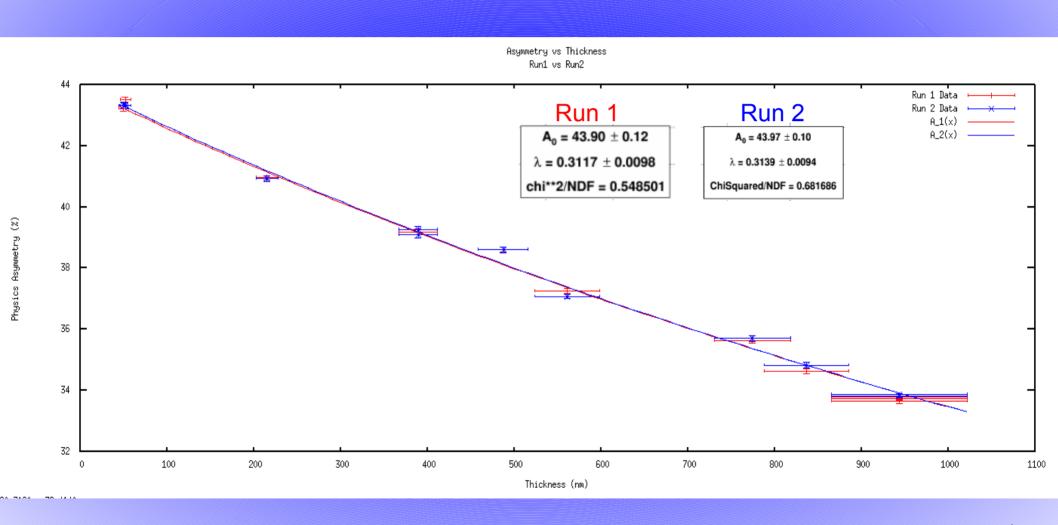

Mott Run 2 Analysis


- Asymmetry versus Thickness: Run 2 versus Run 1 with nominal cuts: E: -1 to +3 sigma, Time-of-Flight -2 to +2 sigma
- Asymmetry versus Thickness: Exploring Asymmetry
 Depedence on Energy Cut in Half-Sigma Slices
- Detector Energy Resolution Energy Spread Corrected
- Relative Rates Measurement Results


Run 2 - E-Cut: -1 to +3 Sigma, ToF-Cut -2 to +2 Sigma

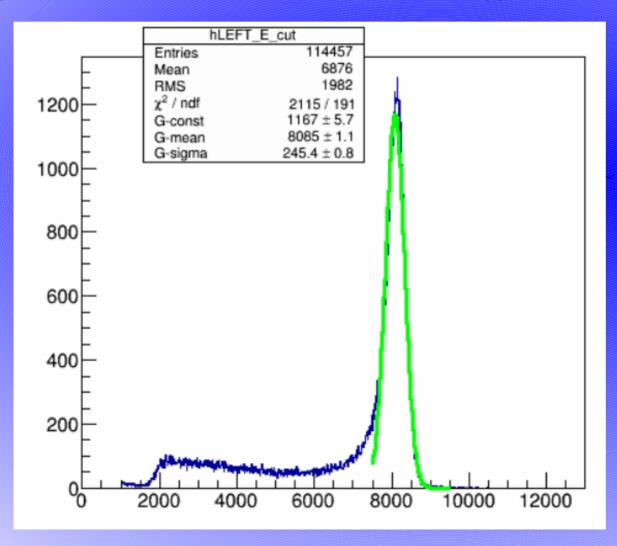
Target Ladder Position	Nominal Thickness (nm)	FESEM Thickness (nm)	d(FESEM Thickness) (nm)	Asymmetry (%)	d(Asymmet ry) %
15	1000	943.71	78.19	33.817	0.0729
2	625	561.18	37.24	37.075	0.0758
13	50	52.03	5.99	43.310	0.1030
14	350	389.44	22.21	39.083	0.0944
3	870	836.76	48.76	34.828	0.0896
1	225	215.17	12.57	40.928	0.0932
4	750	774.57	44.33	35.703	0.0915
5	500	487.58	28.78	38.602	0.0925
12	50	50.00	5.00	43.311	0.1043
8	350	389.44	22.21	39.264	0.0941
15	1000	943.71	78.19	33.859	0.0445


Run 2 versus Run 1 - Nominal Cuts

Run 2 Run 1

Run 2 versus Run 1 - Nominal Cuts

Run 2 versus Run 1 – Nominal Cuts


	F	oil		Ru	ın 1	Ru	ın 2	Asymmetry			
Target Ladder Position		FESEM Thickness (nm)	d(FESEM Thickness) (nm)	Physics Asymmetry (%)	d(Asymmetr y) (%)	Physics Asymmetry (%)	d(Asymmetr y) (%)	Percent Difference (%)	Run 2 within Run 1	Run 1 within Run 2	
15	1000	943.71	78.19	33.774	0.0801	33.817	0.0729	0.126	yes	no	
3	870	836.76	48.76	34.622	0.0782	34.828	0.0896	0.595	no	yes	
4	750	774.57	44.33	35.618	0.0817	35.703	0.0915	0.240	no	no	
2	625	561.18	37.24	37.246	0.0840	37.075	0.0758	0.460	yes	no	
5	500	487.58	28.78	38.608	0.0825	38.602	0.0925	0.016	no	yes	
14	350	389.44	22.21	39.185	0.0897	39.083	0.0944	0.261	yes	no	
8	350	389.44	22.21	39.182	0.0829	39.264	0.0941	0.209	yes	no	
1	225	215.17	12.57	40.959	0.0722	40.928	0.0932	0.076	no	yes	
12	50	50.00	5.00	43.221	0.0887	43.311	0.1043	0.207	no	no	
13	50	52.03	5.99	43.506	0.0872	43.310	0.1030	0.451	yes	no	
15-stabili ty	1000	943.71	78.19	33.643	0.0614	33.859	0.0445	0.638	no	yes	
				$A_0 = 43.90$	$A_0 = 43.90 \pm 0.12$		A ₀ = 43.97 ± 0.10 A_0		yes	yes	
				3 - 0 2117 + 0 0000		3 00400 10	Lambda		0.703 yes		

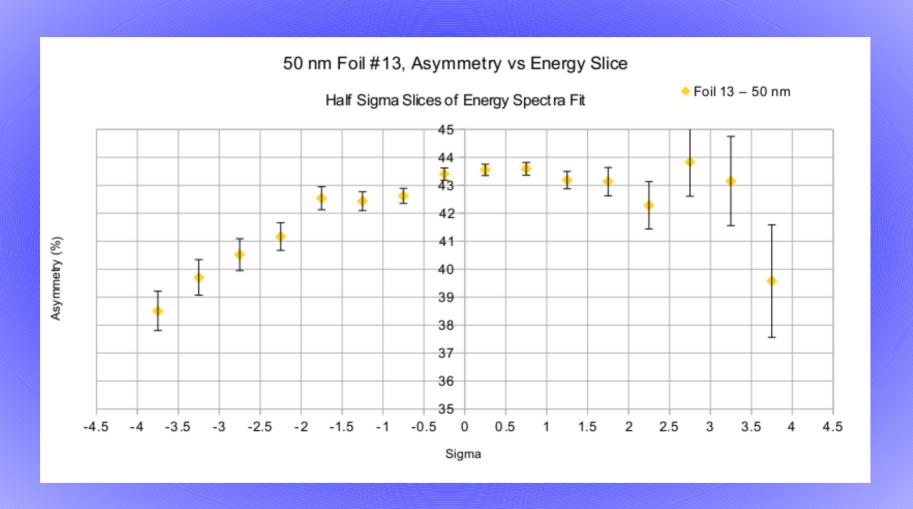
 $\lambda = 0.3117 \pm 0.0098$ $\lambda = 0.3139 \pm 0.0094$

ChiSquared/NDF = 0.681686

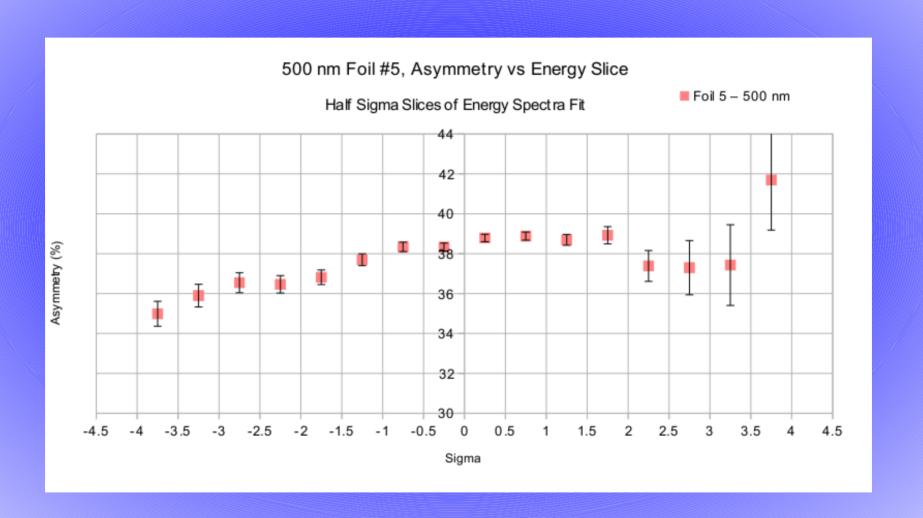
Asymmetry Depedence on Energy Cut

 Computed asymmetry for half-sigma-width slices from -4 to +4 sigma of the Gaussian ToF-cut Energy Spectra fit

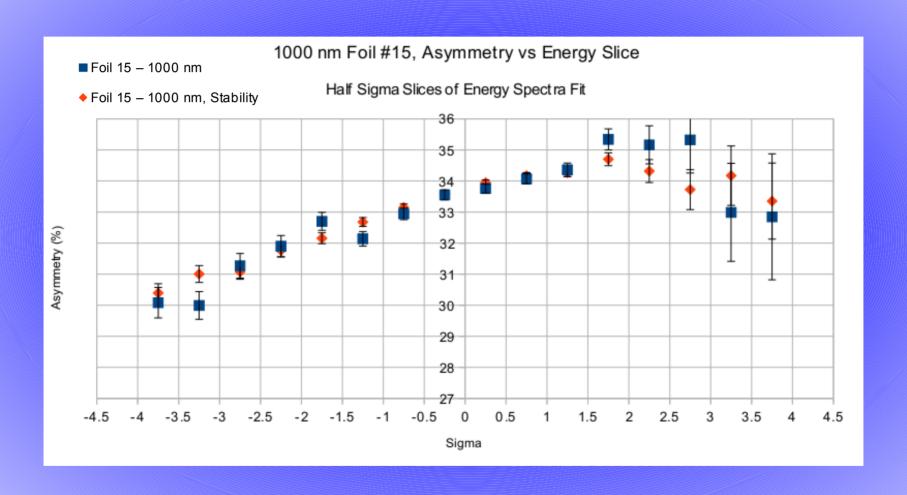
Units of Sigma: Channels


-4 to -3.5 : 7105 to 7228 -3.5 to -3 : 7228 to 7350

- - -


-0.5 to mean: 7963 to 8085 Mean to 0.5: 8085 to 8208 0.5 to 1: 8208 to 8330

Mean: 8085 Sigma: 245

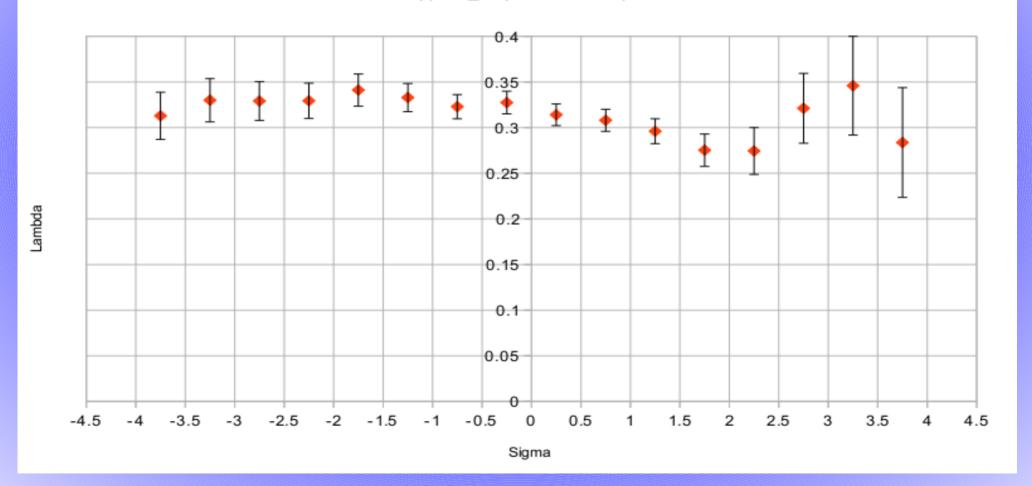

Asymmetry Depedence on Energy Cut Thin Foil 13, 50 nm

Asymmetry Depedence on Energy Cut Medium Foil 5, 500 nm

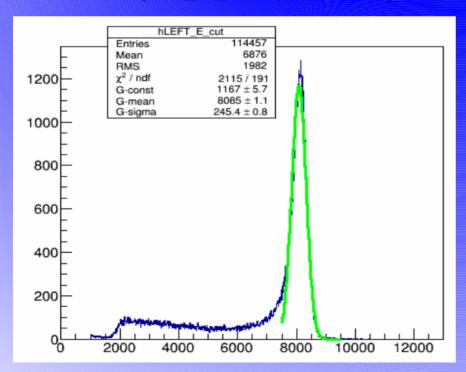
Asymmetry Depedence on Energy Cut Thick Foil 15, 1000 nm

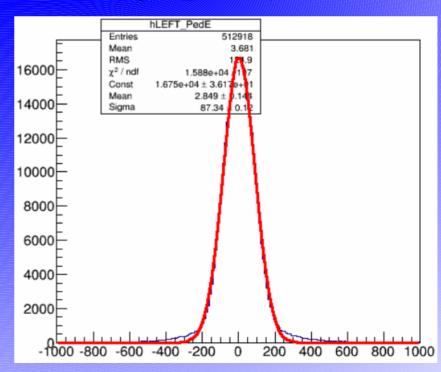
Asymmetry Depedence on Energy Cut A_0

A_0 versus Energy Cut


Half Sigma Slices of Energy Spectra Fit A(t) = A_0 / (1 + lambda * t)

Asymmetry Depedence on Energy Cut Lambda


Half Sigma Slices of Energy Spectra Fit $A(t) = A_0/(1 + lambda * t)$



Detector Energy Resolution – Energy Spread Corrected

- Energy Resolution = (mean / std dev) * 100 (%) of energy spectra
- Corrected for energy spread by fitting detector pedestal events in a detector when
 no Mott events in that detector with a gaussian
- Taking sigma from pedestal fit, corrected E-spectra sigma and recomputed energy resolution

sigma_E_corr = Sqrt (Sigma_E_uncorr^2 - Sigma_Ped^2)

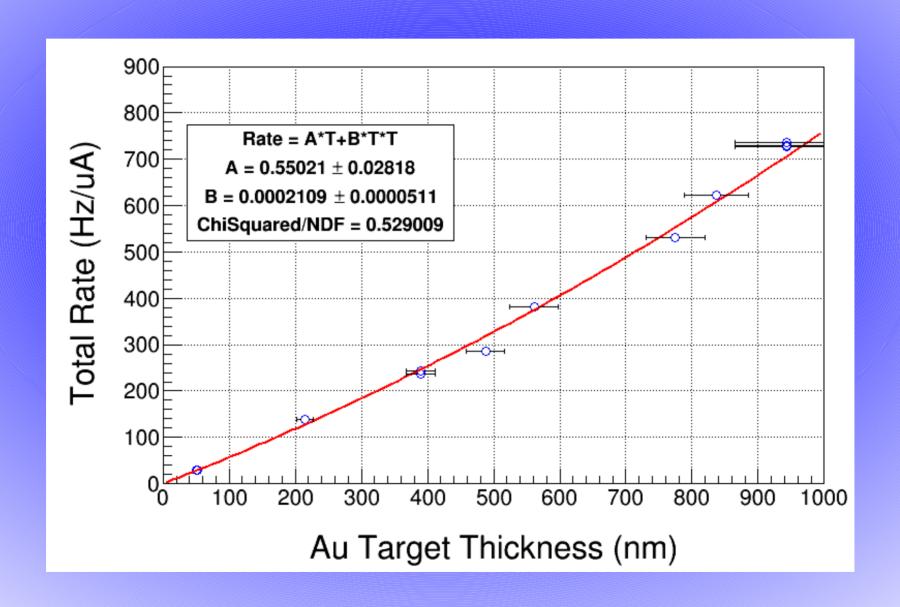
Detector Energy Resolution - Energy **Spread Corrected**

<u>, </u>				Left	Detector	Right	Detector	Up	Detector	Down	Detector
Target Ladder Position		FESEM Thickness (nm)	d(FESEM Thickness) (nm)	Energy Resolution, Before Pedestal Correction (%)	Energy Resolution, After Pedestal Correction (%)	Energy Resolution, Before Pedestal Correction (%)	Energy Resolution, After Pedestal Correction (%)	Energy Resolution, Before Pedestal Correction (%)	Energy Resolution, After Pedestal Correction (%)	Energy Resolution, Before Pedestal Correction (%)	Energy Resolution, After Pedestal Correction (%)
15	1000	943.71	78.19	3.040	2.842	3.595	3.062	3.515	2.974	3.326	2.940
2	625	561.18	37.24	3.045	2.848	3.592	3.055	3.565	3.016	3.330	2.942
13	50	52.03	5.99	3.332	3.111	3.927	3.320	3.819	3.220	3.656	3.239
14	350	389.44	22.21	2.999	2.793	3.563	3.010	3.529	2.965	3.289	2.901
3	870	836.76	48.76	2.997	2.795	3.550	3.006	3.538	2.976	3.285	2.899
1	225	215.17	12.57	2.988	2.783	3.546	2.994	3.534	2.969	3.299	2.912
4	750	774.57	44.33	2.996	2.791	3.556	3.004	3.529	2.964	3.303	2.917
5	500	487.58	28.78	2.979	2.776	3.538	2.986	3.499	2.936	3.284	2.898
12	50	50.00	5.00	3.323	3.090	3.925	3.298	3.824	3.205	3.659	3.237
8	350	389.44	22.21	2.961	2.758	3.517	2.960	3.494	2.927	3.235	2.842
15	1000	943.71	78.19	2.994	2.790	3.550	3.003	3.499	2.945	3.282	2.896

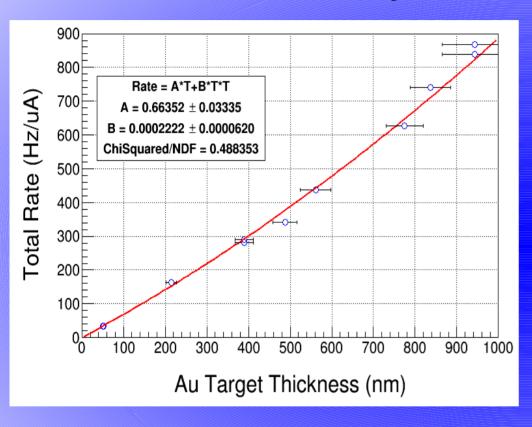
Average Change In Energy Resolution After Pedestal/Energy Spread Correction –

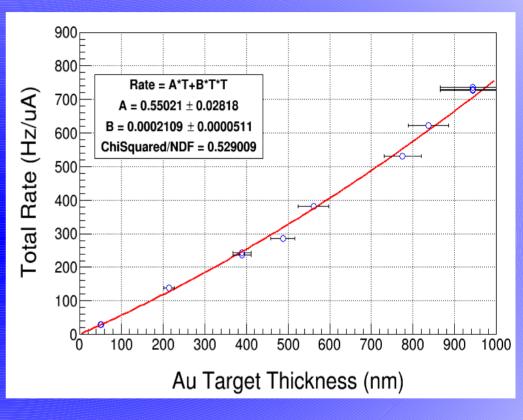
Left: -0.207 % Right: -0.560 % Up: -0.568 % Down: -0.393 %

NOTE: The above table averages together runs on a given foil from the Run 2 Thickness 3 versus Asymmetry runs


Relative Rates Measurement Results

Single Runs, all with the same current of ~1.15 uA


				LE	FT	RIGHT		UP		DOWN			
Target Ladder Position	Nominal Thickness (nm)	FESEM Thickness (nm)	d(FESEM Thickness) (nm)	Current (uA)	d(l) (uA)	Rate (Hz / uA)	dR						
15	1000	943.71	78.19	1.152	0.0118	178.28	1.85	177.97	1.85	187.43	1.95	186.17	1.94
15	1000	943.71	78.19	1.152	0.0118	178.53	1.91	176.20	1.89	186.34	2.00	186.35	2.00
14	350	389.44	22.21	1.149	0.0117	58.13	0.62	57.98	0.62	59.95	0.64	60.23	0.64
13	50	52.03	5.99	1.148	0.0117	7.16	0.08	6.99	0.08	7.32	0.08	7.46	0.08
12	50	50.00	5.00	1.149	0.0117	7.00	0.08	6.92	0.08	7.08	0.08	7.28	0.08
8	350	389.44	22.21	1.149	0.0117	59.14	0.63	59.11	0.63	62.15	0.66	62.79	0.66
5	500	487.58	28.78	1.149	0.0117	69.09	0.73	69.51	0.74	73.13	0.78	73.01	0.78
4	750	774.57	44.33	1.148	0.0118	131.41	1.40	128.68	1.37	136.25	1.45	134.04	1.44
3	870	836.76	48.76	1.151	0.0118	153.65	1.64	149.79	1.60	160.08	1.71	159.50	1.71
2	625	561.18	37.24	1.149	0.0118	94.15	1.00	93.14	0.99	97.73	1.04	97.71	1.04
1	225	215.17	12.57	1.150	0.0117	34.37	0.37	33.44	0.36	35.68	0.38	35.29	0.38
15	1000	943.71	78.19	1.150	0.0118	179.30	1.91	181.92	1.94	188.06	2.01	186.88	2.00


Relative Rates Measurement Results

Total Rate versus Thickness

Relative Rates vs Rates from Thickness vs Asymmetry Study

Rates from Asymmetry vs Thickness

Rates from Relative Rates Measurement