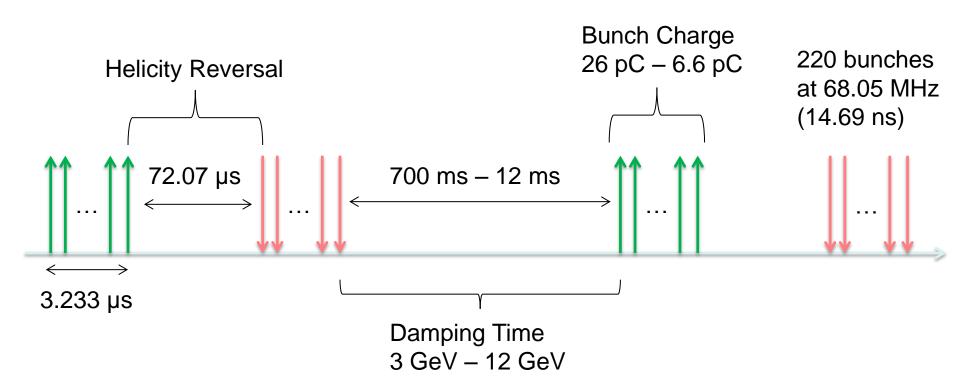
MEIC Polarized Electron Source & Magnetized source for MEIC Electron Cooler


MEIC Collaboration Meeting Spring 2015

Riad Suleiman

March 31, 2015

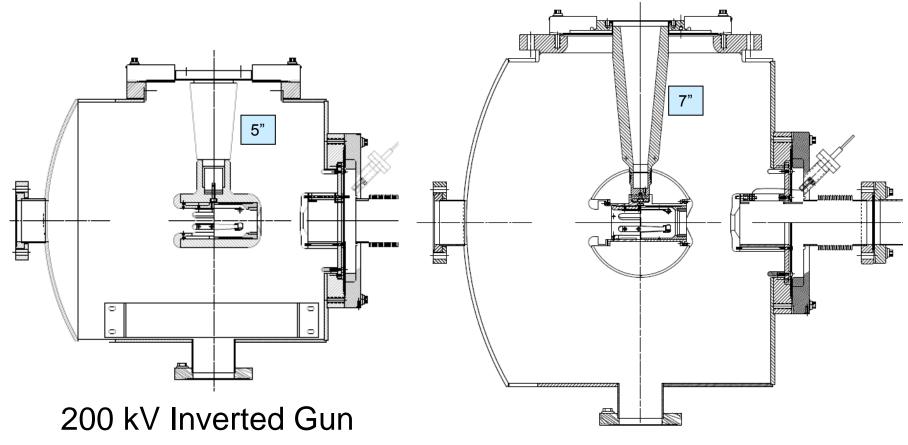
MEIC Polarized Electron Source

MEIC Polarized Source

Source Parameter Comparison

Parameter	CEBAF	JLab/FEL	EIC eRHIC	EIC MEIC	Cornell ERL	LHeC	CLIC	ILC
Polarization	Yes	No	Yes	Yes	No	Yes	Yes	Yes
Photocathode	GaAs / GaAsP	Bulk GaAs			K ₂ CsSb			
Width of microbunch (ps)	50	35	100	50	2	100	100	1000
Time between microbunches (ns)	2	13	106	14.69	0.77	25	0.5002	337
Microbunch rep rate (MHz)	499	75	9.4	68.05	1300	40	1999	3
Width of macropulse	-	-	-	3.233 µs	-	-	156 ns	1 ms
Macropulse repetition rate (Hz)	-	-	-	2x83	-	-	50	5
Charge per microbunch (pC)	0.4	133	5300	26	77	640	960	4800
Peak current of microbunch (A)	0.008	3.8	53	0.52	38.5	6.4	9.6	4.8
Laser Spot Size (cm, diameter)	0.1	0.5	0.6	0.3	0.3	0.5	1	1
Peak current density (A/cm²)	1	19	188	7.4	500	32	12	6
Average current from gun (mA)	0.2	10	50	0.001	100	25	0.015	0.072

* Unpolarized: Bulk GaAs (Cs,F), K₂CsSb, Na₂KSb, ...


Polarized: GaAs/GaAsP (Cs,F).

Proposed

Managing Large Bunch Charge

- Larger Laser Size (reduces space-charge emittance growth and suppresses surface charge limit)
- II. Higher Gun Voltage:
 - Reduce space-charge emittance growth, maintain small transverse beam profile and short bunch-length; clean beam transport
 - Compact, less-complicated injector
- III. To accelerate large bunch charge in CEBAF: use RF feedforward system for C100 cryomodules

JLab 500 kV Inverted Gun

- Longer insulator
- Spherical electrode

Magnetized Source for MEIC Electron Cooler

- MEIC Electron Beam Cooling Requirements
- Thermionic Gun
- > Photogun
- Magnetized (Angular-momentum-dominated) Beam
- > Summary

Bunched Magnetized Electron Beam for Cooling

Bunch Length	100 ps (3 cm)		
Repetition Rate	748.5 MHz		
Bunch Charge	267 pC		
Peak Current	2.67 A		
Average Current	200 mA		
Emitting Area	6 mm φ		
Transverse Normalized Emittance	10s microns		
Solenoid Field at Cathode	2 kG		

Source Performance & Dependencies

- Thermal Emittance: Intrinsic property of a cathode. Depends on work function, surface roughness, laser wavelength, temperature.
- Achievable Current: QE, laser wavelength, laser power, laser damage, heating, temperature.
- ➤ Bunch Charge: laser peak power, repetition rate, active cathode area.
- Cathode Lifetime: ion back bombardment, dark current, contamination by residual gas, evaporation, beam loss, halo beam.

Thermionic Gun

Example 1: TRIUMF e-Linac for photo-fission of actinide target materials to produce exotic isotopes:

- BaO: 6 mm diameter, 775°C
- Grid at 650 MHz
- Gun HV: 300 kV
- Average beam current: 10 mA
- Bunch charge: 16 pC
- Normalized emittance: 30 microns. Emittance is dominated by the electric field distortion caused by the grid.

Production target sets no requirement on beam emittance

Example 2: MAX-LAB Thermionic – Photocathode RF Gun. Thorin *et al.*, NIM A **606**, 291 (2009):

- Thermionic: for storage ring injection
 - BaO: 6 mm diameter, 1100°C
 - Bunch charge: 0.2 nC, 3 GHz
 - Bunch length: 1 ps after energy filter
 - Peak current: 200 A. Average beam current: 600 mA
 - Normalized emittance: 35 microns

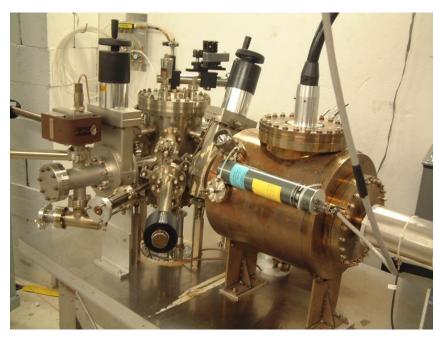
To switch, reduce T=1100°C to T=700°C

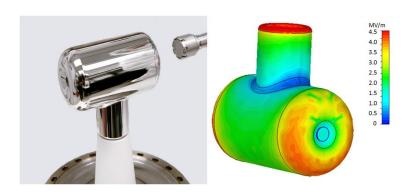
- Photocathode: for FEL
 - Bunch charge: 0.2 nC
 - Laser: 9 ps, 10 Hz, 263 nm
 - Average beam current: 2 nA
 - Normalized emittance: 5.5 microns
 - QE: 1.1 x 10⁻⁴

Example 3: Thermionic Gun and 1.5 MeV Injector of BINP's NovoFEL. B.A. Knyazev *et al.*, Meas. Sci. Tech. **21**, 054017 (2010):

Gun HV	300 kV	
Maximum peak current	1.8 A	
Maximum average current	30 - 45 mA	
Maximum bunch repetition rate	22.5 MHz	
Bunch length	1.3 ns	
Bunch charge	1.5 – 2 nC	
Normalized emittance	10 microns	

Photogun


Example 1: JLab 200 kV Inverted dc Gun with K₂CsSb photocathode:


Average beam current: 10 mA

Laser: 532 nm, dc

Lifetime: very long (weeks)

Thermal emittance: 0.7 microns/mm(rms)

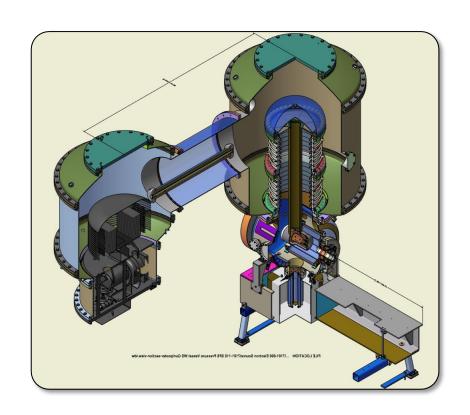
Example 2: JLab 350/500 kV Inverted Gun:

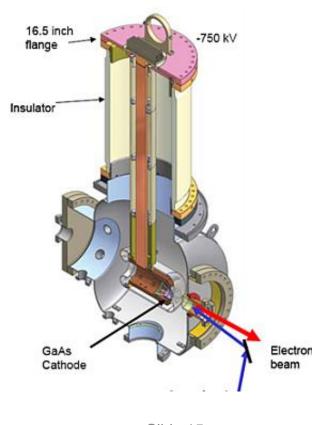
	200 kV Gun	350/500 kV Gun
Chamber	14" ф	18" ф
Cathode	2.5" T-shaped	6" φ Ball
Cathode Gap	6.3 cm	6.3 cm
Inverted Ceramic	4" long	7" long
HV Cable	R28	R30
HV Supply	Spellman 225 kV, 30 mA	Glassman 600 kV, 5 mA
Maximum Gradient	4 MV/M	7 (10) MV/m

Achieved 350 kV with no FE (December 2013), next:

- Keep pushing to reach 500 kV
- Run beam with K₂CsSb photocathode

Example 3: Cornell dc Gun with K₂CsSb photocathode:


Gun HV: currently operating at 350 kV (designed 500-600 kV)


Average beam current: 100 mA

Bunch charge: 77 pC

Bunch length: 10 ps, 1.3 GHz

Normalized emittance: <0.5 microns

Slide 15

Magnetized Beam and Emittance Compensation

Magnetized Cathode:

To produce magnetized electron beam to ensure zero angular momentum inside cooling-solenoid section)

II. Magnetized Injector:

To compensate space-charge emittance growth Solenoid (B_z~2kG) (magnetized beam) Solenoid (B_z~2kG) (space-charge emittance growth compensation)

Summary

- Thermionic gun would be our first choice (less maintenance but may need complicated injector):
 - > TRIUMF/BINP Gun with Inverted Ceramic
- II. To allow for laser pulse shaping, a photogun could be an option:
 - > JLab 350/500 kV Inverted Gun and JLab K₂CsSb
- III. If one gun cannot provide 200 mA, then use two or three guns and combine beams using RF combiner or dipole magnet

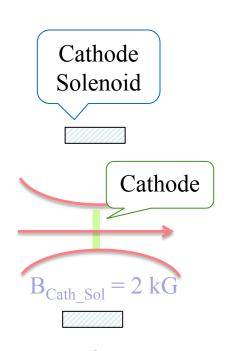
LDRD: 200 mA Magnetized Beam

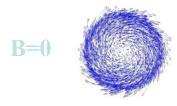
- I. Use JLab 350/500 kV Inverted Gun and JLab K₂CsSb
- II. Design and build Cathode Solenoid
- III. Generate magnetized beam
- IV. Measure beam magnetization:
 - Measure beam emittance vs. beam size
 - ii. Measure directly using slit and screen
- V. Study transportation of magnetized beam (must preserve magnetization)
- VI. Measure magnetized photocathode lifetime at high currents

Magnetized Electron Cooling

Busch's Theorem

- On entering or exiting solenoid, beam acquires a kick that makes beam to rotate
- Canonical angular momentum:


$$P_{\theta} = \frac{1}{2} e B_z \sigma_e^2$$


Magnetic emittance:

$$\varepsilon_{mag} = \frac{eB_z\sigma_e^2}{2m_ec}$$

 $\varepsilon_{\text{mag}}[\text{microns}] \sim 30 \text{ B[kG] } \sigma_{\text{e}}[\text{mm}]^2$

 Note: inside Cooling Solenoid, electron beam is <u>calm</u>: not to have any angular motion

Cooling Solenoid

Electron Beam

Ion Beam

 $B_{Cool_Sol} = 2 T$

Electrons born in uniform B_z

$$\varepsilon_{n,total} = \varepsilon_{th} R = R \sqrt{\frac{k_B T}{m_e c^2}}$$

$$\sigma_e$$
= R_{laser} = 3 mm

Upon exit of Cathode Solenoid

$$\varepsilon_{n,total} = \sigma_e \sqrt{\varepsilon_{th}^2 + \varepsilon_{mag}^2 + \varepsilon_{SC}^2}$$

$$arepsilon_{mag} = rac{eB_{Cath_Sol}\sigma_e^2}{2m_ec}$$

Upon entering Cooling Solenoid

$$\begin{aligned} P_{\theta} &= P_{Cath_Sol} - P_{Cool_Sol} \approx 0 \\ \varepsilon_{mag} &\approx 0 \end{aligned}$$

$$\frac{B_{Cool_Sol}}{B_{Cath_Sol}} = \frac{R^2}{\sigma_e^2}$$

 σ_e = 1 mm

21

Why: Magnetized beam? Why: Cooling Solenoid?

- I. Electron and ion are moving at same speed in cooling section
- II. Magnetic field to suppress ion-electron recombination in cooling section (for non-magnetized cooling, a small magnetic field maybe required to suppress recombination)
- III. Cooling Solenoid must have high parallelism of magnetic field lines:

$$\frac{\Delta B_{\perp}}{B_z} < 10^{-5}$$

Cooling Rate: Dependencies on Electron Beam Properties

- Proportional to average beam current (does not depend on peak current)
- II. Independent of ion beam intensity
- III. Proportional to cooler length
- IV. Magnetized cooling is less dependent on electron beam transverse emittance
- V. Cooling rates with magnetized electron beam are ultimately determined by electron longitudinal energy spread only, which can be made much smaller than transverse one.

VI.

Paraxial Beam Envelope Equation

$$\sigma'' + \frac{\gamma'}{\beta^2 \gamma} \sigma' + \left(\frac{eB_z}{2mc\beta\gamma}\right)^2 \sigma - \frac{2I}{I_0 \beta^3 \gamma^3} \frac{1}{\sigma} - \left(\frac{P_\theta}{mc\beta\gamma}\right)^2 \frac{1}{\sigma^3} - \left(\frac{\varepsilon_n}{\beta\gamma}\right)^2 \frac{1}{\sigma^3} = 0$$
Acceleration Damping

Injector Solenoids (for space-charge emittance growth compensation)

Space Charge

Cathode Solenoid Cooling Solenoid

$$P_\theta = P_{Cath_Sol} - P_{Cool_Sol} \approx 0$$

$$P_{Cath_Sol} = \frac{1}{2}eB_zR^2$$
 B_z~2 kG

$$P_{Cool_Sol} = \frac{1}{2} eB_z \sigma_e^2$$
 B_z~20 kG