Phase 1C: GEM Fabrication

Michael Kohl

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

GEMs for DarkLight Phase 1c (MRI 2014)

March 2017 collaboration meeting:

- 1) Build and test GEMs as planned and laid out in June 2015?
- 2) Build GEMs with updated design parameters / size / number of channels ?
- 3) Build something else for Phase 1c?
- 4) Use UVa assembly line to have GEMs built / subcontract only test at HU ?

MRI award expiration July 31, 2017 !!!

What has happened since the March 2017 collaboration meeting:

2) Build GEMs with updated design parameters / size / number of channels

MRI award expiration extended until July 31, 2018!

What has happened since the March 2017 collaboration meeting:

2) Build GEMs with updated design parameters / size / number of channels

MRI award expiration extended until July 31, 2018!

March/April 2017: Talks with UVa group (N. Liyanage) looked like promising avenue for Phase 1c GEM production – details to be worked out
April 18, 2017: Phone conference with Richard and Jim Shank, discussed NCE and plan to have the GEMs produced at UVa
May 5, 2017: Submitted document to request NCE, favoring production at UVa
June 7, 2017: NSF phone call with Jim Shank and Randy Ruchti. Must build GEMs at HU (development MRI !) as necessary condition for NCE.

What has happened since the March 2017 collaboration meeting:

2) Build GEMs with updated design parameters / size / number of channels

MRI award expiration extended until July 31, 2018!

March/April 2017: Talks with UVa group (N. Liyanage) looked like promising avenue for Phase 1c GEM production – details to be worked out

April 18, 2017: Phone conference with Richard and Jim Shank, discussed NCE and plan to have the GEMs produced at UVa

May 5, 2017: Submitted document to request NCE, favoring production at UVa

- June 7, 2017: NSF phone call with Jim Shank and Randy Ruchti. Must build GEMs at HU (development MRI !) as necessary condition for NCE.
- June 19, 2017: Submitted NCE request with plan of action, timeline, resource, budget to convince NSF that this is feasible.

July 18, 2017: NCE approved; (progr. report due July 31, 2017, overdue Oct 31)

What has happened since the March 2017 collaboration meeting:

2) Build GEMs with updated design parameters / size / number of channels MRI award expiration extended until July 31, 2018!

March/April 2017: Talks with UVa group (N. Liyanage) looked like promising avenue for Phase 1c GEM production – details to be worked out

- April 18, 2017: Phone conference with Richard and Jim Shank, discussed NCE and plan to have the GEMs produced at UVa
- May 5, 2017: Submitted document to request NCE, favoring production at UVa
- June 7, 2017: NSF phone call with Jim Shank and Randy Ruchti. Must build GEMs at HU (development MRI !) as necessary condition for NCE.
- June 19, 2017: Submitted NCE request with plan of action, timeline, resource, budget to convince NSF that this is feasible.

July 18, 2017: NCE approved; (progr. report due July 31, 2017, overdue Oct 31)

 Fall 2017: Decided on active size: 25x40 cm²; 2x3 = 6 GEM elements APV/MPD readout: 400µm pitch, 5+8=13 APVs/, 78 APV/6 MPD, ~10k channels
 [but also some delay: PSI beamtime, challenges with admin, planning for spring]

What has happened since the March 2017 collaboration meeting:

2) Build GEMs with updated design parameters / size / number of channels MRI award expiration extended until July 31, 2018!

March/April 2017: Talks with UVa group (N. Liyanage) looked like promising avenue for Phase 1c GEM production – details to be worked out

- April 18, 2017: Phone conference with Richard and Jim Shank, discussed NCE and plan to have the GEMs produced at UVa
- May 5, 2017: Submitted document to request NCE, favoring production at UVa
- June 7, 2017: NSF phone call with Jim Shank and Randy Ruchti. Must build GEMs at HU (development MRI !) as necessary condition for NCE.
- June 19, 2017: Submitted NCE request with plan of action, timeline, resource, budget to convince NSF that this is feasible.

July 18, 2017: NCE approved; (progr. report due July 31, 2017, overdue Oct 31)

- Dec. 30, 2017: Submitted progress report
- Jan. 5, 2018: J. Shank mandating more detailed reporting requirement
- Jan. 24, 2018: R. Ruchti new program officer for MRI, phone call on Feb. 2
- Feb. 11, 2018: Submitted detailed, revised plan of action, approved Feb. 21, 2018 Status update due end of April

Plan of Action (approved Feb. 21, 2018)

1.1 Manpower

Postdocs, students, technician

1.2 Tasks and Timeline

Preparation phase Construction phase Testing and commissioning

1.3 Milestones

May 1, 2018:

All drawings finalized.

June 1, 2018:

Purchase orders for detector parts and electronics submitted. July 31, 2018:

All remaining grant funding spent before expiration.

Preparation phase completed. January 1, 2019:

Construction phase completed. March 1, 2019:

Testing and commissioning completed. GEMs ready.

1.4 Costs

Item	Amount	Price/\$	Total/\$	Remarks	
A) GEM detector parts					
G10/FR4 GEM frames	36	100	3,600	3/chamber x6(+18)	
G10/FR4 PV frames	9	100	900	1/chamber x6(+3)	
G10/FR4 HV frames	18	100	1,800	2/chamber x6(+6)	
G10/FR4 frames NRC	3	125	375	non-recurring cost	
GEM foils	36	700	25,200	3/chamber x6(+18)	
GEM foils NRC	1	10,000	10,000	glass photo tool	
HV foils	8	700	5,600	1/chamber x6(+2)	
HV foils NRC	1	2,500	2,500	regular photo tool	
Readout layer	10	1,000	10,000	1/chamber x6(+4)	
Readout layer NRC	1	3,000	3,000	regular photo tool	
Al test chamber	2	2,500	5,000	for HV and gain testing	
Foil stretcher tool	2	1,000	2,000	special tool	
Total GEM parts			69,975		
B) Electronics					
VME crate	2	7,084	14,168	Wiener 64x	
VME CPU	2	5,335	10,670	GE XVB602 or XVR15	
APV25 cards	91	150	13,650	13/cham. x6(+13)	
VME MPD digitizer	7	3,000	21,000	6 for 6x13 APVs (+1)	
4-APV backplanes	15	500	7,500	2/cham. x6(+3)	
5-APV backplanes	8	500	4,000	1/cham. x6(+2)	
Total Electronics			70,988		
C) Additional materials	and suppli	ies			
Support structure	2	2,000	4,000	1 per sector	
HV distribution	7	300	2,100	voltage dividers $6(+1)$	
Gas flow regulator	7	200	1,400	at entrance $6(+1)$	
Gas piping	7	200	1,400	6(+1)	
Cabling HV, APV	7	500	4,500	per chamber $x6(+1)$	
Misc. items	1	10,000	10,000	small items, materials	
Total Materials			23,400		
Indirect charge			11,232	indirect for materials	
Total A) + B) + C)			175,595		

What has happened since the March 2017 collaboration meeting:

2) Build GEMs with updated design parameters / size / number of channels

MRI award expiration extended until July 31, 2018!

Jan/Feb. 2018: Re-organized working group (Anusha → Ishara → TBA; technician; undergrads) Detailed discussions with Uva and INFN Established contact with Rui de Oliveira at CERN March 9, 2018: MK and T. Patel visited R.d.O. at CERN, long discussion about the best concept: NS2 – no stretch, no stress!

What has happened since the March 2017 collaboration meeting:

2) Build GEMs with updated design parameters / size / number of channels

MRI award expiration extended until July 31, 2018!

Jan/Feb. 2018: Re-organized working group (Anusha → Ishara → TBA; technician; undergrads) Detailed discussions with Uva and INFN Established contact with Rui de Oliveira at CERN

March 9, 2018: MK and T. Patel visited R.d.O. at CERN, long discussion about the best concept: NS2 – no stretch, no stress!

	Glued-foil design vs.	NS2 concept
Assembly	2 foils / day, 1 chamber / week	1 chamber / 2 hours!
Mistakes	Inexcusable, fatal	Can be corrected
Changes	Impossible	Can be implemented
Risk	High risk of failure, accumulating	Very low risk
Dead area	Spacer grid required	No dead area
Cost	no big difference	•

The CMS GEM Project

Install triple-GEM detectors (double stations) in 1.6<|n|<2.1-2.4 endcap region:

- ✓ Restore redundancy in muon system for robust tracking and triggering
 - Improve L1 and HLT muon momentum resolution to reduce or maintain global muon trigger rate
- ✓ Ensure ~ 100% trigger efficiency in high PU environment

<u>July 1, 2013</u>

NS2 (CMS Muon Endcap System)

Current state-of-the-art: Self-stretching assembly without spacers (CERN)

Tightening the horizontal screws tensions the GEMs & seals gas volume

only glue joint in assembly

2012

- No spacers in active area
- Assembly time: 2 hours
- No gluing, no soldering
- Re-opening possible
- GEM exchange possible
- No stretch degradation with time
- Stretching more intense
- Base PCB and honeycomb in active area

NS2 (EIC prototype)

EIC prototype (M. Hohlmann, Florida Institute of Technology)

Minimizing material budget in active area

R/O Support Frame

NS2 (DarkLight Phase 1c)

5-layer stack clambed and stretched

Guiding out RO layer to exterior on 2 sides for signals, and 1 side for HV

Cr(0.1µm) on Kapton or Al(3µm) on Mylar for Gas Pressure Windows

NS2 (DarkLight Phase 1c)

CMS: rate density < 100 kHz/cm², gas flow not forced

Interruptions in inner frames for entrance points, all layers permeable

DarkLight: Forced gas flow suggested, for higher rate capability <10 MHz/cm² Replace also dead volume below Readout (RO); Use permeable GEM foil for Drift

Production cost for 6 detectors (Mar. 2018)

		m/o	matiere	tooling	design
-24 GEM (6 feuilles de 4 p)		12000		1200	2000
-6 read-out with conne	ectors	25200		500	2000
-inner frames		4200	600		500
-outer frame		4800	600		500
-closing frame		2400	600		400
-6 set of screws /o-rin	g/gas feeds		2000		
-7 cathodes		2450		400	300
Totals		51050	3800	2100	5700
Cost for 6 detectors:	CHF 54,850				
Design :	CHF 5,700				
Tooling:	CHF 2,100				
Total:	CHF 62,650 =	USD 6	5,947 (0.	95 CHF/\$)	
Budgeted in NCE for GEM costs:		USD 6	9,975		

Electronics

VME crates: Group has 4x Wiener 64x. **Updated quotes from Wiener and CAEN** [PO in preparation for 4 mini crates (MUSE) \$16,000] Controllers: Group has 1x XVB602, 1x XVR15, and 3x V7768. Updated quotes from Abaco PO in preparation for 7x XVB602 \$25,915 **APVs:** Need 78+x. APV chips becoming scarce. Found 100 at MIT; small batches at Uva, Temple, Bonn PO in preparation for 96x APV25 from Imperial Coll. \$ 1,516 Quotation requested for APV cards from EES, Italy est. \$20,000 **Backplanes:** Need 15x 4-APV (UVa), 8x 5-APV (ISU) backplanes est. \$15,000 **MPDs**: Group has 7x MPD4 Need additional 6+x. est. \$14,000 **Quotation requested for MPD modules from EES** Total \$76,431 **Budgeted in NCE for electronics** \$70,988

Account balance

MUSE (558812)	
Remaining scientific equipment funds (noIDC):	\$16,032.00
MRI (558809)	
Remaining salary funds incl. fringe (+IDC)	\$26,948.41
Remaining supplies funds (+IDC)	\$23,082.27
Remaining scientific equipment funds (noIDC):	\$138,225.00
Total remaining in MDI	• • • • • • • • • • •

Budet is sufficient for six (6) GEM chambers including APV+MPD electronics

Can possibly afford another 1-2 GEMs, with different readout layer for streaming readout study

Present working group *

	NSF postdoc (Ishara Fernando: MUSE) shared / funded presently by NSF	Sri Lanka
	DOE postdoc (Tongtong Cao: TREK/E36) funded presently by DOE	China
	PhD student (Jesmin Nazeer: DarkLight, GEMs) funded presently by NSF	Sri Lanka
3	Master's student (Tanvi Patel: MUSE, GEMs) funded presently by NSF/EAGER	India / USA
	PhD student (Bishoy Dongwi: TREK/E36) funded presently by DOE	Namibia
	Undergraduate students Letrell Harris, HU sophomore: GEMs	USA
	Angel Christopher, HU freshman: GEMs funded presently by DOE and NSF	Nigeria
3	Lab Technician (Ameer Blake: GEMs) funded presently by NSF	USA

* Presently supported by DOE DE-SC0013941, NSF HRD-1649909, PHY-1505934 and PHY-1436680

Conclusion

- Successful completion of MRI project feasible
- Budget is in place and sufficient
- New NS2 concept adopted for self-stretching GEMs without gluing
- Preparations at full swing, within projected timeline
- Phase-1C GEM setup to be ready by early 2019

Double Mask vs Single Mask

Base material = Polyimide 50µm + 5µm copper cladding on both sides

Achieved 40x40cm²

Achieved 200x60cm²

July 1, 2013

M. Tytgat - MPGD2013