Thickness

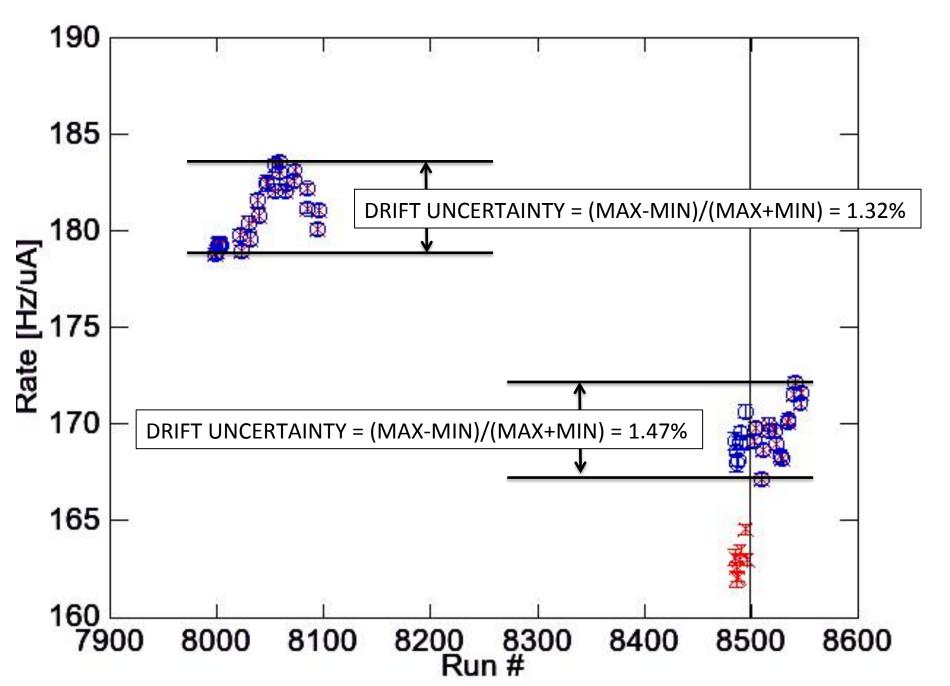
Mott Target Ladder Gold Foil Thickness Measurements M. L. Stutzman, Md. A. Mamun JLab-TN-16-049

Table 1: Summary of gold foil thicknesses measurements for "siblings" of the Mott target foils measured with FESEM technique. Random and systematic sources of uncertainty in these measurements are shown in rows 3-8, and final uncertainty in the thickness measurements is shown in line 9.

	Au_5385_B Ladder pos.15	Au_3057_C Ladder pos.3	Au_5134_B Ladder pos.4	Au_7028_B Ladder pos.2	Au_5275_C Ladder pos.5	Au_5613_D Ladder 8&14	Au_7029_B Ladder pos.1	Au_6809_B Ladder pos.13
Nominal Thickness (nm)	1000	870	750	625	500	355	225	50
Thickness (all data, nm)	943.7	836.8	774.6	561.2	482.0	389.4	215.2	52.0
random: nominally identical	29.0	7.1	9.1	8.0	9.7	4.5	1.9	2.3
Systematic								
FESEM resolution	1.2	1.2	1.2	1.2	1.2	1.2	1.20	1.2
 same image reanalysis 	22.6	12.4	13.3	10.2	9.7	9.2	3.80	2.9
 Lebow sibling 5% 	47.2	41.8	38.7	28.1	24.1	19.5	10.80	2.6
Systematic total	52.4	43.6	40.9	29.9	26.0	21.6	11.51	4.1
<u>dT</u> (nm)	59.8	44.2	41.9	31.0	27.7	22.1	11.7	4.7

Good Events

- 1. For each detector (L/R/U/D) in an individual run...
- 2. Determine the mean μ_t and sigma σ_t of a Gaussian fit to the timing region around the events from the coil.
- 3. Apply timing cuts at $\mu_t \pm 2\sigma_t$.
- 4. For remaining events determine the mean μ_{E} and sigma σ_{E} of a Gaussian fit to energy channels [8000:9000].
- 5. Apply energy cut from μ_E 0.5 σ_E to μ_E + 2 σ_E .
- 6. Sum remaining events.


Asymmetries

- 1. For each run form respective (L/R) and (U/D) super-ratio:
 - a. Physics asymmetry
 - b. Detector asymmetry
 - c. Beam asymmetry
- 2. We statistically average the asymmetries for a set of runs for a given foil.
- 3. Note that a different pair of detectors were used for each run:
 - a. Run I polarization was horizontal so we use the U/D physics asymmetry
 - b. Run II polarization was vertical so we use the L/R physics asymmetry

<u>Rates</u>

- 1. For each run we first compute an un-normalized rate (Hz) and then correct for:
 - a. Electronics dead time, typically 0.1%
 - b. DAQ dead time, typically 5-20%
- 2. For each run we average the un-normalized L/R/U/D and normalize to BCM calibrated average current to form normalized average rate detector rate (Hz/uA).
- 3. For each run we use the average of the (Run I/II) 1um Au foil runs to correct the corresponding rates of the extrapolation foil measurements:
 - a. Run I correction was 1.0 (no correction)
 - B. Run II correction of 1.0372 +/- 0.0008 applied to foil#15 (1um), foil#2(0.625um) and two of six runs for foil#13(0.050um)
- 4. We statistically combine the the normalized (Hz/uA) L/R/U/D average corrected rate for a set of runs for a given foil.
- 5. For each foil we combine three uncertainties to the final rate:
 - 1. Statistical per recipe above
 - 2. Systematic average of BCM uncertainties (dl/l) of runs per foil, typically 1%
 - 3. Systematic drift uncertainty of 1.32% (Run I) and 1.47% (Run II)

Rate Corrections and Drift Uncertainties

