Thickness

Mott Target Ladder Gold Foil Thickness Measurements
M. L. Stutzman, Md. A. Mamun

JLab-TN-16-049

Table 1: Summary of gold foil thicknesses measurements for "siblings" of the Mott target foils measured with FESEM technique. Random and systematic sources of uncertainty in these measurements are shown in rows 3-8, and final uncertainty in the thickness measurements is shown in line 9.

Nominal Thickness (nm)	1000	870	750	625	500	355	225	50
Thickness (all data, nm)	943.7	836.8	774.6	561.2	482.0	389.4	215.2	52.0
random: nominally identical	29.0	7.1	9.1	8.0	9.7	4.5	1.9	2.3
Systematic								
- FESEM resolution	1.2	1.2	1.2	1.2	1.2	1.2	1.20	1.2
- same image reanalysis	22.6	12.4	13.3	10.2	9.7	9.2	3.80	2.9
- Lebow sibling 5\%	47.2	41.8	38.7	28.1	24.1	19.5	10.80	2.6
Systematic total	52.4	43.6	40.9	29.9	26.0	21.6	11.51	4.1
dT (nm)	59.8	44.2	41.9	31.0	27.7	22.1	11.7	4.7

Good Events

1. For each detector (L/R/U/D) in an individual run...
2. Determine the mean μ_{t} and sigma σ_{t} of a Gaussian fit to the timing region around the events from the coil.
3. Apply timing cuts at $\mu_{\mathrm{t}} \pm 2 \sigma_{\mathrm{t}}$.
4. For remaining events determine the mean μ_{E} and sigma σ_{E} of a Gaussian fit to energy channels [8000:9000].
5. Apply energy cut from $\mu_{\mathrm{E}}-0.5 \sigma_{\mathrm{E}}$ to $\mu_{\mathrm{E}}+2 \sigma_{\mathrm{E}}$.
6. Sum remaining events.
7. For each run form respective (L/R) and (U/D) super-ratio:
a. Physics asymmetry
b. Detector asymmetry
c. Beam asymmetry
8. We statistically average the asymmetries for a set of runs for a given foil.
9. Note that a different pair of detectors were used for each run:
a. Run I polarization was horizontal so we use the U/D physics asymmetry
b. Run II polarization was vertical so we use the L/R physics asymmetry

Rates

1. For each run we first compute an un-normalized rate (Hz) and then correct for:
a. Electronics dead time, typically 0.1%
b. DAQ dead time, typically $5-20 \%$
2. For each run we average the un-normalized $L / R / U / D$ and normalize to $B C M$ calibrated average current to form normalized average rate detector rate ($\mathrm{Hz} / \mathrm{uA}$).
3. For each run we use the average of the (Run I/II) 1 um Au foil runs to correct the corresponding rates of the extrapolation foil measurements:
a. Run I - correction was 1.0 (no correction)
b. Run II - correction of 1.0372 +/- 0.0008 applied to foil\#15 (1um), foil\#2(0.625um) and two of six runs for foil\#13(0.050um)
4. We statistically combine the the normalized $(\mathrm{Hz} / \mathrm{uA}) \mathrm{L} / \mathrm{R} / \mathrm{U} / \mathrm{D}$ average corrected rate for a set of runs for a given foil.
5. For each foil we combine three uncertainties to the final rate:
6. Statistical - per recipe above
7. Systematic - average of BCM uncertainties (dl / I) of runs per foil, typically 1%
8. Systematic - drift uncertainty of 1.32% (Run I) and 1.47% (Run II)

Rate Corrections and Drift Uncertainties

