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1 Beamline Optics

This note describes a preliminary beamline design for detection and measurement of the
Stern-Gerlach deflection of relativistic 0.5 MeV (γ = 2) polarized electrons in the CEBAF
1D Spectrometer beamline. Stern-Gerlach (S-G) deflection of higher energy electrons is also
considered.

Beamline parameters for the proposed beamline are given in Table 1. The quadrupole
layout is shown in Figure 1. By design the line is symmetric about the center at point C0, and

Table 1: Lattice parameters for the Stern-Gerlach beamline in the 1D Spectrometer beamline
served by the CEBAF injector. Asterisks indicate quadrupoles whose strengths can be much
weaker, and tailored to lead the beam gracefully to the beam dump. The assume kinetic
energy is 500 KeV or, approximately γ = 2.

index loc. Loc. name Quad name Quad len. Inv.foc.len. dBy/dx ∆θSG
cm mm 1/m T/m 10−10 r

s0 0 B0
s1 0.3 B1 qBC1 6 894.0 433.5 2.000
s2 2.8 B2 qBC2 6 51.76 25.1 0.1158
s3 10.3 B3 qBC3 6 -11.67 -5.66 -0.026
s4 17.8 C0
s5 25.3 C1 qCD1 6 -11.67 -5.66 -0.026
s6 32.8 C2 qCD2 6 51.76 * *
s7 35.3 C3 qCD3 6 894.0∗ * *
s8 35.6 C4

the optics plots in the following figures respect this symmetry. In fact, the strengths of the
quadrupoles beyond C0, especially the final quadrupole, qCD3, can be much weaker without
affecting performance, depending on the distance to the beam dump. This is indicated by
asterisks in the table. The only really strong quadrupole is qBC1. This quadrupole is taken
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to be identical to a permanent magnet quadrupole described in Table III of a paper by Li
and Musumeci[1].

Optical properties of the beamline are shown in the following figures.
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Figure 1: A six-quadrupole beam line for detection and measurement of Stern-Gerlach de-
flection of a polerized electron beam. The heavy black lines indicating quadrupole lengths
are not-to-scale, except, of course, that they cannot overlap. The dimensions on the plot
are approximately valid for a 500 KeV (kinetic energy) electron beam. But, by scaling all
lengths and quadrupole focal lengths, the same design is also applicable to other energies,
for example 5 MeV. In order for the S-G deflection to be purely vertical the quadrupoles
have to be “skew”, i.e. at 45◦ relative to “erect”.
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Figure 2: Vertical, βy(s), and horizontal, βx(s), beta functions for S-G detection and mea-
surement in the CEBAF 1D Spectrometer Line.

Figure 3: (Square root) beta function ratios
√
βx(s)/βx(s0) and

√
βy(s)/βy(s0). The initial

beta functions, β(s0) are determined by the beam emittances (which vary inversely with the
relativistic beam energy factor γ). The initial beta function values are therefore propor-
tional to γ. This limits the degree to which the S-G signal can be enhanced by reducing γ,
while limiting the transverse beam dimensions. As a result the maximum S-G displacement
depends only weakly on γ.
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Figure 4: Transverse rms beam sizes as functions of longitudinal position s. For designs in
this tech-note, the maximum rms beam size is constrained to be approximately σy = 1 cm.

Figure 5: Horizontal betatron phase advance as function of longitudinal position s.
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Figure 6: Vertical betatron phase advance ψy(s), as function of longitudinal position s. Be-
cause ψy(s) is essentially constant over the central, high-β region, the Stern-Gerlach displace-
ment does not increase notably over this central region, in spite of the substantial angular
deflection ∆θSGy caused by the (very strong) qB1 quadrupole. Whatever S-G displacement
there is, is mostly already present at the qB3 quadrupole.
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2 Calculated Stern-Gerlach Displacement

The ratio of Stern-Gerlach to electromagnetic force is determined by a ratio of coupling
constants:

µB/c

e
= 1.930796× 10−13 m, (1)

where, except for anomalous magnetic moment and sign, Bohr magneton µB is the electron
magnetic moment.

The Stern-Gerlach deflection in a quadrupole is strictly proportional to the inverse focal
lengths of the quadrupole;

∆θSGy = − µ∗
x

ecβ
qx, and ∆θSGy =

µ∗
y

ecβ
qy, (2)

These formulas are boxed to emphasize their universal applicability to all cases of polarized
beams passing through quadrupoles. For all practical (electron beam) cases β ≈ 1.

The S-G deflection at fixed magnet excitation is proportional to 1/γ. Yet, superficially,
these formulas show no explicit dependence on γ. This is only because the angular deflections
are expressed in terms of quadrupole inverse focal lengths. For a given quadrupole at fixed
quadrupole excitation, the inverse focal length scales as 1/γ. Expressing the S-G deflection
in terms of inverse focal lengths has the effect of “hiding” the 1/γ Stern-Gerlach deflection
dependence, which comes from the beam stiffness.

µ∗
x and µ∗

y differ from the Bohr magnetron µB only by sin θ and cos θ factors respectively
For a single quadrupole, the Stern-Gerlach-induced angular deflection is

∆θSGy = (1.93× 10−13 m) qy. (3)

The transverse displacement ∆yj at downstream location “j” caused by angular displacement
∆θy,i at upstream location “i” is given by

∆y,j = qy (1.93× 10−13 m)
√
βy,jβy,i sin(ψy,j − ψy,i). (4)

where ψy,j − ψy,i is the vertical betatron phase advance from “i” to “j”. Currently the
conditions at starting point s0 are not well known. I tentatively assume, for both planes,

ε =
1.0× 10−6 m

γ
,

σB0 =
50× 10−6 µm

√
γ

,

βB0 =
σ2

ε
, αB0 = 0, ψB0 = 0. (5)

epsilon_x := 1.0e-6/gamma;

epsilon_y := 1.0e-6/gamma;

sigmaB0x := 50e-6/sqrt(gamma);

sigmaB0y := 50e-6/sqrt(gamma);
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betB0x := sigmaB0x^2/epsilon_x;

betB0y := sigmaB0y^2/epsilon_y;

alfB0x := 0.0:

alfB0y := 0.0:

phB0x := 0.0:

phB0y := 0.0:

The resulting S-G deflections are shown in Table 2. As explained earlier the S-G displacement

Table 2: .Stern-Gerlach displacements, measured in Å units, at points along the beamline,
for kinetic energy Ke = 500 KeV.

source displ. displ. displ. displ.
at B2 at B3 at C0 at C1

qBC1 0.3942 0.3938 0.3925
qBC2 0.0088 0.0098 0.1085
qBC3 0 -0.0020 -0.0039
total 0.4029 0.4012 0.3994

is essentially constant over the central region. Stretching the central region, even by a large
amount, has little effect on the S-G displacement. This would, however allow the S-G
detection BPM’s to be long, to increase their sensitivity, or even multiple, to lower the noise
floor.
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3 Energy Dependence of Stern-Gerlach Deflection

To investigate the dependence on electron energy, the kinetic energy was increased by a
factor of 9, yielding γ = 9.8. All longitudinal positions and quad lengths were tripled. This
left the tuned-up quadrupole magnetic field gradients approximately constant, because the
quadrupole strengths were approximately tripled. These changes left the beamline still fairly
well tuned up. Just one plot, namely Figure 7, illustrates the outcome of these few changes.

The resulting parameters are given in Table 3. The most important changes were that the
rms transverse size increased from 12 to 14 mm and the maximum field gradient decreased
from 433 T/m to 275 T/m. Meanwhile the Stern-Gerlach deflection decreased by only 12
percent. Because of the reduced beam emittances with γ = 10, the quadrupole bore could be
decreased, allowing the field gradient to increase, say by a factor of two. After re-optimization
the S-G signal would surely be found to be approximately independent of energy (contrary
to earlier discussion).

Table 3: Lattice parameters for the Stern-Gerlach beamline in the 1D Spectrometer beamline
served by the CEBAF injector, assuming γ = 10, or approximately, electron energy Ee =
5 MeV.

index loc. Loc. name Quad name Quad len. Inv.foc.len. dBy/dx ∆θSG
cm mm 1/m T/m 10−10 r

s0 0 B0
s1 0.9 B1 qBC1 18 298.0 275.3 0.5784
s2 8.4 B2 qBC2 18 17.25 15.9 0.0334
s3 30.9 B3 qBC3 18 -3.89 -3.59 -0.026
s4 53.4 C0
s5 75.9 C1 qCD1 18 -3.89 -3.59 -0.026
s6 98.4 C2 qCD2 18 17.25 * *
s7 105.9 C3 qCD3 19 * * *
s8 106.8 C4

Table 4: .Stern-Gerlach displacements, measured in Å units, at points along the beamline,
for kinetic energy Ke = 4.5 MeV.

source displ. displ. displ. displ.
at B2 at B3 at C0 at C1

qBC1 0.3419 0.3412 0.3405
qBC2 0.0075 0.0085 0.0094
qBC3 0 -0.0017 -0.0034
total 0.3495 0.3480 0.3464
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Figure 7: Transverse rms beam sizes as functions of longitudinal position s for Ke = 4.5 MeV,
γ = 9.8.

4 Uncertainty and Conclusions

The greatest uncertainty in the calculation concerns Eqs. (5), and the corresponding lines
of code listed below these equations. To magnify the Stern-Gerlach deflection one wants
the vertically-deflecting quadrupole to be strong. This automatically causes βy to increase,
which increases the beam height. Accepting the limitation that the rms beam height cannot
exceed approximately 10 mm, this limits the downstream S-G displacement. In detail this
limitation depends on the initial beta function/emittance/beam height assumptions. The
entries, on my part, to Eqs. (5) were little more than guesses. Discussion of this aspect of
the calculation will be appreciated.

The Stern-Gerlach energy dependence has been much discussed in the past. The im-
portance of the transverse beam size has not previously, as far as I know, been properly
appreciated in those discussions. It is now my opinion that, as long as the transverse beam
dimensions are dominated by adiabatic damping (with increased energy) that the achievable
S-G-induced betatron beam deflection is more or less independent of energy.

As far as the proof-of-principle test at CEBAF, the most convenient energy appears to be
at 500 KeV, but this is for reasons of economy and accessibility, not because the S-G signal
is strongest at low energy.

Also somewhat surprising is that, for the assumed electron beam parameters, the beam-
line optics cannot be designed to enable the S-G deflection to much exceed about one
Angstrom. As I have argued previously and repeatedly, especially with Reza’s suggested
toggling polarization beam preparation, it should not be hard to detect such a small beta-
tron amplitude.

9



References

[1] R. Li and P. Musumeci, Single-Shot MeV Transmission Electron Microscopy with Pi-
cosecond Temporal Resolution, Physical Review Applied 2, 024003, 2014.

10


