


# Gamma-ray vortex generation by inverse Compton scattering

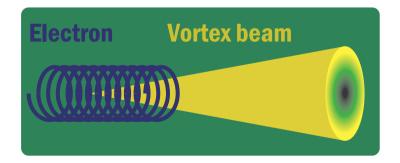
### Yoshitaka Taira

National Institute of Advanced Industrial Science and Technology (AIST), Japan Visiting scientist: Mississippi State University and Jefferson Lab.

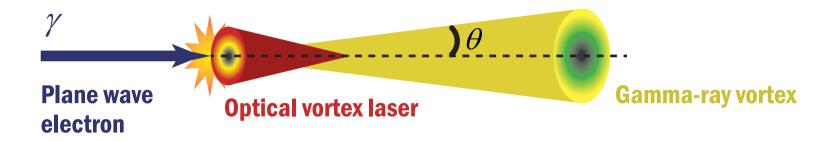

# **Orbital angular momentum beams**



M. Padgett et al., Phys. Today 57 (2004) 35.


#### **Generation**

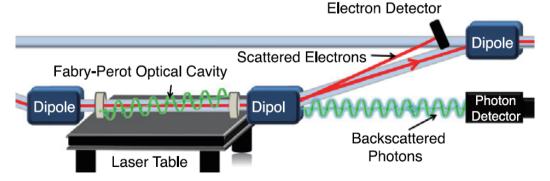
**Special filters** 




**Hologram** 

**EM** radiation from an electron




# **OAM** gamma-rays generation



**CEBAF** injector: Ex = 10 - 100 keV

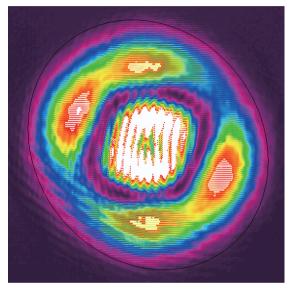
Interferometory can be used in this energy range.

#### JLab Compton polarimeter at Hall A and C: Ex = 0.1 - 3GeV



## **Tasks**

#### **OAM laser (high power, pulse) development**


Preliminary experiment was done.



Demonstration that laser after passing through 2 cavity mirrors still carry OAM.

**Constructing a test cavity.** 

Measurement of storing power, beam size, etc.



#### **Calculation**

**Spatial distribution of OAM gamma-rays. Measurement method of OAM gamma-rays.** 

# **Manuscripts submitted to the Journal**

Y. Taira, T. Hayakawa, M. Katoh, *Gamma ray vortices from nonlinear inverse Compton scattering of circularly polarized light*, submitted to Phys. Rev. Lett. (2016).

Y. Taira, S. Zhang, Split in phase singularities of an optical vortex by diffraction through a simple circular aperture, submitted to Opt. Lett. (2017).