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1 Rest Frame

1.1 Lagrangian

In the rest frame of a particle of mass m, its Lagrangian is the difference between its kinetic
energy and the sum of its restmass energy and its energy of interaction with the external
field 1)

L = Ekin − (mc2 + Efield) . (1)

In the particle’s true rest frame (TRF; double-starred quantities), its kinetic energy is zero
so that

L∗∗ = −mc2 − ϕ∗∗ (2)

where ϕ∗∗ is the interaction energy of the particle with the external field in the TRF. In
order to describe the velocity dependence of the Lagrangian for very small velocities, we
define a ”fixed rest frame” (FRF; starred quantities) which moves with a fixed velocity c ~β0
with respect to the laboratory frame (LF). The TRF moves at an infinitesimal velocity c ~β∗

with respect to the FRF and with velocity c~β with respect to the LF.
The FRF Lagrangian L∗ is related to L∗∗ by

L∗ = L∗∗/γ∗ (3)

where γ∗ ≡ 1/

√
1− ~β∗

2
, since γ∗L∗ is a Lorentz invariant 2). Thus, for a particle of mass

m, we have
L∗ = −mc2/γ∗ − ϕ∗∗/γ∗ (4)

where the first part, L∗µ = −mc2/γ∗, represents the particle’s motion and mass energy, and

the second part, L∗ϕ = −ϕ∗(t∗, ~x∗, ~β∗), the particle-field interaction, and where we have

defined ϕ∗(t∗, ~x∗, ~β∗) ≡ ϕ∗∗/γ∗.

1



1 REST FRAME 2

1.2 Canonical Momentum

The canonical momentum ~P ∗ = ~P ∗µ + ~P ∗ϕ conjugate to the coordinates ~x∗ associated with a

Lagrangian L∗ is defined 1) as the partial derivative of the Lagrangian with respect to the
particle’s velocity c ~β∗. Its parts

cP ∗µ,k = ∂L∗µ/∂β
∗
k = γ∗β∗kmc

2 (5)

and
cP ∗ϕ,k = ∂L∗ϕ/∂β

∗
k = −∂ϕ∗/∂β∗k , (6)

without being canonical momenta in themselves, represent the particle motion and the ex-
ternal force field, respectively.

The Taylor expansion of ϕ∗ in ~β∗ about ~β∗ = 0 is

ϕ∗(t∗, ~x∗, ~β∗) = ϕ∗0(t
∗, ~x∗)− cβ∗mP ∗ϕ0,m −

1

2
β∗mβ

∗
`Q
∗
`m +O(β∗3) (7)

where

ϕ∗0 ≡ ϕ∗(t∗, ~x∗, ~β∗ = 0) = ϕ∗∗( ~β∗ = 0) (8)

cP ∗ϕ0,m ≡ −
[
∂ϕ∗

∂β∗m

]
~β∗=0

; Q∗`m ≡ −
[

∂2ϕ∗

∂β∗m∂β
∗
`

]
~β∗=0

(9)

and we follow the convention of summing over double indices.
Thus we obtain the following expressions for the field part of the canonical momentum

and its derivative with respect to β∗ in the FRF:

cP ∗ϕ,k(t
∗, ~x∗, ~β∗) = cP ∗ϕ0,k(t

∗, ~x∗) + β∗`Q
∗
`k(t

∗, ~x∗) +O( ~β∗
2
); (10)

c∂P ∗ϕ,k/∂β
∗
n = Q∗nk . (11)

1.3 Hamiltonian

The Hamiltonian H∗ is defined as the sum of the kinetic and interaction energy 1). It is
related to the Lagrangian and the canonical momentum by H∗ = c ~β∗ ~P ∗ − L∗ and separates
like the Lagrangian into the parts H∗µ associated with particle motion and H∗ϕ with the
external field:

H∗µ = c ~β∗ ~P ∗µ − L∗µ = mc2γ∗β∗mβ
∗
m +mc2/γ∗ = γ∗mc2 ; (12)

H∗ϕ = c ~β∗ ~P ∗ϕ − L∗ϕ = ϕ∗0(t
∗, ~x∗) +

1

2
β∗mβ

∗
`Q
∗
`m(t∗, ~x∗) . (13)

The Hamiltonian, expressed as a function of t∗, ~x∗, ~β∗ and of t∗, ~x∗, ~P ∗ is therefore

H∗(t∗, ~x∗, ~β∗) = H∗µ +H∗ϕ = γ∗mc2 + ϕ∗0(t
∗, ~x∗) +

1

2
β∗mβ

∗
`Q
∗
`k(t

∗, ~x∗) ; (14)

H∗(t∗, ~x∗, ~P ∗) =
√
m2c4 + c2[ ~P ∗ − ~P ∗ϕ(t∗, ~x∗)]2 + ϕ∗0(t

∗, ~x∗) +
1

2
β∗mβ

∗
`Q
∗
`k(t

∗, ~x∗) . (15)
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2 Lorentz Boost to the Laboratory Frame

Since the product γ∗L∗ is invariant under Lorentz transformations 2), the Lagrangian L, the
canonical momentum ~P , and the Hamiltonian H in the LF are 1)

L = (γ∗/γ)L∗; cPk = c∂L/∂βk; H = c ~P ~β − L . (16)

The particle motion parts of the LF Lagrangian Lµ, of the canonical LF momentum cPµ,k ≡
∂Lµ/∂βk, and of the LF Hamiltonian Hµ = c ~Pµ~β − Lµ are

Lµ = −mc2/γ; c ~Pµ = mc2γ~β; Hµ = mc2γ . (17)

The field interaction part of the LF Lagrangian Lϕ is

Lϕ = −γ
∗

γ
ϕ∗ = −γ

∗

γ
ϕ∗0 +

γ∗

γ
cP ∗ϕ0,mβ

∗
m +

1

2

γ∗

γ
β∗mβ

∗
`Q
∗
`m +O(β∗3) (18)

which, according to eqns. (118) and (119), becomes

Lϕ = γ0(~β ~β0−1)ϕ∗0 +c ~P ∗ϕ0
~β+γφ( ~β0~β)(c ~P ∗ϕ0

~β0)−γ0(c ~P ∗ϕ0 ~β0)+
1

2γ0
β∗mβ

∗
`Q
∗
`m +O(β∗3) (19)

where φ ≡ γ0/(γ0 + 1). The corresponding part of the LF momentum Pϕ,k = ∂Lϕ/∂βk is
then, using eqn. (122),

cPϕ,k = γ0β0,kϕ
∗
0+cP

∗
ϕ0,k+γ0φβ0,k(c ~P

∗
ϕ0
~β0)+[δmk + γ0φβ0,kβ0,m] β∗`Q

∗
`m+

γ0
2
β0,kβ

∗
mβ
∗
`Q
∗
`m +O(β∗3)

(20)
and the field part of the LF Hamilronian Hϕ is

Hϕ = γ0ϕ
∗
0 + γ0(c ~P

∗
ϕ0
~β0) + γ0β0,mβ

∗
`Q
∗
`m +

γ0
2
β∗mβ

∗
`Q
∗
`m +O(β∗3) . (21)

If we rewrite eqns. (20) and (21) as

cPϕ,k = cP ∗ϕ0,k + β∗`Q
∗
k` + γ0φβ0kβ0m(cP ∗ϕ0,m + β∗`Q

∗
m`) + γ0β0k(ϕ

∗
0 +

1

2
β∗mβ

∗
`Q
∗
`m) (22)

and

Hϕ = γ0(ϕ
∗
0 +

1

2
β∗mβ

∗
`Q
∗
`m) + γ0β0m(cP ∗ϕ0,m + β∗`Q

∗
m`) , (23)

we find that
c ~Pϕ = c ~P ∗ϕ + γ0φ~βo(~β0 ~P

∗
ϕ) + γ0~β0H

∗
ϕ +O(β∗3) (24)

and
Hϕ = γ0H

∗
ϕ + γ0(~β0 ~P

∗
ϕ) +O(β∗3) . (25)

Thus, the Lorentz transformation of the FRF energy-momentum 4-vector (H∗; c ~P ∗) to the LF

energy-momentum 4-vector (H; c ~P ) is a canonical transformation i.e. the FRF Hamiltonian

H∗ and its conjugate FRF momentum ~P ∗ transform into the LF Hamiltonian H and its
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conjugate LF momentum ~P up to orders of β∗2. It is shown in Appendix 7.2 that this holds
true for all orders of β∗.

Finally, using the definitions

c ~Pϕ0 ≡ ~Pϕ(~β∗ = 0); Hϕ0 ≡ Hϕ(~β∗ = 0) , (26)

the total LF Hamiltonian as a function of t, ~x, ~β and of t, ~x, ~P is

H(t, ~x, ~β) = Hµ +Hϕ = mc2γ +Hϕ0 + γ0β0,mβ
∗
`Q
∗
`m +O(β∗2) (27)

H(t, ~x, ~P ) =

√
m2c4 + c2(~P − ~Pϕ)2 +Hϕ0 + γ0β0,mβ

∗
`Q
∗
`m +O(β∗2) (28)

and

cPk = mc2γβk + cPϕ0,k + [δkm + γ0φβ0,m] β∗`Q
∗
`m +O(β∗2) (29)

c∂Pk/∂βn = mc2
∂(γβk)

∂βn
+ γ0 [δkm + γ0φβ0,m] [δ`n + γ0φβ0,nβ0,`]Q

∗
`m +O(β∗) (30)

according to eqn. (123).

3 Thomas Effect

The Lorentz boost describes the relation between two frames at constant relative velocity.
If however the frames are accelerated, they also rotate with respect to each other by the
well-known Thomas rotation 3) described in Appendix 7.3. While a Lorentz boost from the
LF to the TRF by ~β or from the LF to the FRF by ~β0 does not rotate the 3-dimensional
coordinates, a subsequent Lorentz boost from the FRF to the TRF by ~β∗ results in a rest
frame RTRF whose spatial coordinates are rotated with respect to the spatial coordinates
in the non-rotated TRF (NRTRF) boosted directly by ~β from the LF. In consequence, a

physical vector ~V ∗∗ in the NRTRF appears rotated with respect to its appearence ~̃V ∗∗ in the
RTRF so that, according to eqn. (148),

~V ∗∗ = ~̃V ∗∗ − φ[~V ∗∗ × ( ~β∗ × ~β0)] +O(~β∗2) . (31)

Therefore, the derivative of ~V ∗∗ with respect to ~β∗ is[
∂~V ∗∗

∂β∗k

]
~β∗=0

=

[
∂ ~̃V ∗∗

∂β∗k

]
~β∗=0

− φ[~V ∗∗ × (k̂× ~β0)] =

[
∂ ~̃V ∗∗

∂β∗k

]
~β∗=0

− φ[k̂( ~β0~V
∗∗)− ~β0 ˜V ∗∗k ] (32)

where k̂ is the unit vector in k-direction.
This spacial rotation from the RTRF to the NRTRF affects the representation of all

vectors in the TRF, in particular those making up the external field ϕ∗∗. However, if ϕ∗∗ is a
function of a scalar or of the scalar product of two vectors ~V ∗∗ and ~W ∗∗, it may be expressed
in either the rotated or the non-rotated vector since

~V ∗∗ ~W ∗∗ = ~̃V ∗∗ ~̃W ∗∗−φ
[
~V ∗∗[ ~β∗( ~β0 ~W

∗∗)− ~β0( ~β∗ ~W
∗∗)] + ~W ∗∗[ ~β∗( ~β0~V

∗∗)− ~β0( ~β∗~V
∗∗)]
]

(33)

where the expression in the square parentheses is zero.
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4 External Forces

The force ~F exerted on a particle by an external field is defined as the total derivative of the
motion-related momentum ~Pµ with respect to time. Since the total time derivative of the
canonical momentum is given by the Lagrange equation 1)

dPk
dt

=

[
∂L

∂xk

]
~β,t

=
dPµ,k
dt

+
dPϕ,k
dt

, (34)

we find

Fk ≡
dPµ,k
dt

=

[
∂L

∂xk

]
~β,t

− dPϕ,k
dt

=

[
∂L

∂xk

]
~β,t

−
[
∂Pϕ,k
∂t

]
~x~β

−
[
∂Pϕ,k
∂xm

]
t~β

dxm
dt
−
[
∂Pϕ,k
∂βm

]
t~x

dβm
dt

.

(35)
Using eqn. (13), we obtain

Fk = −
[
∂Hϕ

∂xk

]
t~β

+ cβm

[
∂Pϕ,m
∂xk

]
t~β

− cβm
[
∂Pϕ,k
∂xm

]
t~β

−
[
∂Pϕ,k
∂t

]
~x~β

−
[
∂Pϕ,k
∂βm

]
t~x

dβm
dt

(36)

or

~F = c~β × (~∇× ~Pϕ)−

[
∂ ~Pϕ
∂t

]
~x~β

− ~∇Hϕ −

[
∂ ~Pϕ
∂βm

]
t~x

dβm
dt

= mc
d(γ~β)

dt
. (37)

where
c∂Pϕ,k/∂βn = γ0 [δkm + γ0φβ0,kβ0,m] [δ`n + γ0φβ0,nβ0,`]Q

∗
`m (38)

It may be noteworthy that, if a particle traverses a localized force field whose value
vanishes outside a given boundary, its momentum ~Pµ is changed only by the ~∇L-term since

d~Pϕ/dt is a total time differential whose integral across the force field is zero.

5 Examples

5.1 Electro-Magnetic Potential

The TRF interaction energy for a particle with a charge e in an electro-magnetic field po-
tential Φ∗∗ is ϕ∗∗ = eΦ∗∗ and the field part of the FRF Lagrangian is

L∗em = −eΦ∗∗/γ∗ = −eΦ∗0(t∗, ~x∗) + ec ~β∗ ~A∗0(t
∗, ~x∗) (39)

and all quatities Q∗`m and higher derivatives with respect to β∗ are zero since (Φ∗; c ~A∗) is a
4-vector and thus

Φ∗(t∗, ~x∗, ~β∗) = γ∗Φ∗0(t
∗, ~x∗)− cγ∗ ~β∗ · ~A∗0(t∗, ~x∗) (40)

where ~A∗ is the electro-magnetic vector potential in the FRF and Φ∗0 ≡ Φ∗( ~β∗ = 0) and
~A∗0 ≡ ~A∗( ~β∗ = 0). The field part ~P ∗em of the canonical momentum is therefore

P ∗em,k =
1

c

[
∂L∗em
∂β∗k

]
= eA∗0,k (41)
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and the field part of the RF Hamiltonian is H∗em = eΦ∗0.
In the LF, the field part Lem of the Lagrangian is, according to eqns. (19) and (41),

Lem = e
[
γ0(~β ~β0 − 1)Φ∗0 + c ~A∗0

~β + γ0φ( ~β0~β)(c ~A∗0
~β0)− γ0(c ~A∗0 ~β0)

]
≡ −eΦ/γ (42)

and the field parts Hem and ~Pem of the Hamiltonian and the canonical momentum are

Hem = eγ0Φ
∗
0 + ecγ0 ~β0 · ~A∗ ≡ eΦ0(t, ~x) ; (43)

~Pem = e
[
~A∗ + φγ0 ~β0( ~β0 ~A∗) + γ0 ~β0Φ

∗
0/c
]
≡ e ~A(t, ~x) (44)

according to eqns. (25) to (26).

The resulting electro-magnetic force ~Fem on the particle is, according to eqn. (37),

~Fem = ec~β × (~∇× ~A)− e

[
∂ ~A

∂t

]
~x

− e~∇Φ = e(c~β × ~B) + e ~E (45)

which is the Lorentz force on a particle of charge e in an electro-magnetic field ( ~E; ~B).

5.2 Stern-Gerlach-Thomas Spin Interaction

The spin ~s of a particle does not change in magnitude and therefore does not change at all
in a Lorentz boost from the LF to the NRTRF so that the NRTRF spin vector ~s∗∗ = ~s. In

the FRF however, the spin vector ~̃s∗, where ~̃s∗( ~β∗ = 0) = ~s, is rotating with ~β∗ according to
eqn. (31) so that

~s = ~̃s∗ − φ~s× ( ~β∗ × ~β0) = ~̃s∗ − φ~̃s∗ × ( ~β∗ × ~β0) +O( ~β∗2). (46)

Thus the change of ~s with time t∗ in the FRF is

d~s

dt∗
=

∂~s

∂t∗
+

∂~s

∂ ~β∗k

d ~β∗k
dt∗

(47)

and, since ∂ ~̃s∗/∂β∗k = 0,

d~s

dt∗
=

∂~s

∂t∗
− ~̃s∗ × (

d ~β∗

dt∗
× ~β0)φ (48)

The first term in eqn. (48) describes the so-called Stern-Gerlach spin precession in the

NRTRF electromagnetic field ( ~B∗∗, ~E∗∗) at fixed ~β∗ 3), i.e.

∂~s

∂t∗
= ~Ω∗∗SG × ~s (49)

where, for a particle with charge e, mass m, and a gyro-magnetic factor g,

~Ω∗∗SG( ~x∗, ~β∗, t∗) = − e

m

g

2
~B∗∗( ~x∗, ~β∗, t∗) . (50)
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The second term is related to the Thomas precession ~s× ~Ω∗∗T caused by the acceleration

c(d ~β∗/dt∗) where

~Ω∗∗T ( ~x∗, ~β∗, t∗) ≡ γ

γ + 1
(
d ~β∗

dt∗
× ~β) . (51)

For ~β∗ = 0, where the NRTRF becomes the FRF, where ~̃s∗ = ~s, ~B∗∗ = ~B∗,

~Ω∗∗T ( ~x∗, ~β∗ = 0, t∗) = ~Ω∗T = φ(
d ~β∗

dt∗
× ~β0) , (52)

~Ω∗∗SG( ~x∗, ~β∗ = 0, t∗) = ~Ω∗SG = − e

m

g

2
~B∗( ~x∗, t∗) , (53)

the total spin precession in the FRF is

d~s

dt∗
= ( ~Ω∗SG + ~Ω∗T )× ~s (54)

which, according to ref. 3, results in a NRTRF field interaction energy ϕ∗∗ at ~β∗ = 0 of

ϕ∗∗( ~x∗, ~β∗ = 0, t∗) = ~s · (~Ω∗SG + ~Ω∗T ) (55)

where ~s · ~Ω∗SG is the Stern-Gerlach energy.

If we infinitesimally change the particle velocity by a fixed amount c ~β∗, the NRTRF,
in which the particle velocity is zero and which does not rotate with respect to the FRF,
differs infinitesimally from the FRF: The vectors ~Ω∗SG and ~Ω∗T become ~Ω∗∗SG and ~Ω∗∗T and the
NRTRF field interaction energy ϕ∗∗ is

ϕ∗∗ = ~s · (~Ω∗∗SG + ~Ω∗∗T ) . (56)

The corresponding field part of the Lagrangian in the NRTRF is then

L∗∗SGT = −~s · (~Ω∗∗SG + ~Ω∗∗T ) . (57)

The field part of the FRF Lagrangian L∗SGT is, according to eqn. (3),

L∗SGT = − 1

γ∗
~s · (~Ω∗∗SG + ~Ω∗∗T ) (58)

where the precession angular velocities are

~Ω∗∗SG = − e

m

g

2
~B∗∗, ~Ω∗∗T = − γ

γ + 1
(~β × d ~β∗/dt∗) (59)

and where, according to eqn. (31),

~B∗∗ = γ∗[ ~B∗ − ~β∗ × ~E∗/c− φ ~B∗ × ( ~β∗ × ~β0)] +O( ~β∗2) (60)

and ~B∗ is the magnetic field in the FRF at ~β∗ = 0.
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Thus, the components of L∗SGT = L∗SG + L∗T are

L∗SG = µ[~s ~B∗ + ~β∗ ~Σ∗ + φ( ~β∗ ~B∗)( ~β0~s)− φ( ~β∗~s)( ~β0 ~B∗)] +O( ~β∗2) (61)

and

L∗T =
γ

γ∗(γ + 1)
~s · (~β × d ~β∗

dt∗
) =

γ

γ∗(γ + 1)
~β · ( ~̇β∗ × ~s) (62)

where µ ≡ (e/m)(g/2), ~̇β∗ ≡ ~β∗/dt∗, and ~Σ∗ ≡ ~s× ~E∗/c.

The resulting field parts of the canonical momentum ~P ∗SGT = ~P ∗SG + ~P ∗T in the FRF are

c ~P ∗SG = µ[ ~Σ∗ + φ ~B∗( ~β0~s)− φ~s( ~β0 ~B∗)] (63)

and

c ~P ∗T,k =
k̂

γ0 + 1
( ~̇β∗ × ~s) + φ~β · (∂

~̇β∗

∂β∗k
× ~s) (64)

according to eqn. (6) and using the relations

∂( γ
γ+1

)

∂βm
=

γ3

(γ + 1)2
βm ;

[
∂(~β γ

γ+1
)

∂β∗k

]
~β∗=0

=
k̂

γ0 + 1
. (65)

The corresponding field part of the FRF Hamiltonian H∗SGT is

H∗SGT = c ~β∗ ~P ∗SGT −L∗SGT = −µ(~s ~B∗)+

[
~β∗

γ0 + 1
− γ~β

γ∗(γ + 1)

]
( ~̇β∗×~s)+φβ∗k

∂ ~̇β∗

∂β∗k
(~s× ~β) (66)

or, according to eqns. (118) and (119),

H∗SGT = µ(~s ~B∗) + φ~β0

[
(β∗k

∂ ~̇β∗

∂β∗k
− ~̇β∗)× ~s

]
= µ(~s ~B∗) + φ[(β∗k

∂ ~̇β∗

∂β∗k
− ~̇β∗) · (~s× ~β0] +O(~β∗2)

(67)

In terms of the velocity-independent LF fields ~B(t, ~x) and ~E(t, ~x), where

~B∗∗ = γ ~B − γ(~β × ~E/c)− γ2

γ + 1
(~β ~B)~β , (68)

~E∗∗ = γ ~E + γ(c~β × ~B)− γ2

γ + 1
(~β ~E)~β , (69)

and ~Σ ≡ ~s× ~E/c, the field part of the LF Lagrangian LSGT = (γ∗/γ)L∗SGT is thus [see eqns.
(58) and (59)]:

LSGT = µ

[
(~s ~B) + (~β~Σ)− γ

γ + 1
(~s~β)( ~B~β)

]
+

1

γ + 1
~β( ~̇β∗ × ~s) (70)
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or LSGT = −~s · ~Ω where the LF spin precession frequency ~Ω is

~Ω = −µ
[
~B + ( ~E/c× ~β)− γ

γ + 1
~β( ~B~β)

]
− 1

γ + 1
(~β × ~̇β∗) (71)

The corresponding field parts of the LF momenta PSGT,k = ∂LSGT/∂βk = PSG,k + PT,k are
therefore

c ~PSG = µ

[
~Σ− γ3~β

(γ + 1)2
(~β~s)(~β ~B)− γ

γ + 1
[~s(~β ~B) + ~B(~β~s)]

]
(72)

and

c ~PT,k = − γ3

(γ + 1)2
βk

[
~β · ( ~̇β∗ × ~s)

]
+

1

γ + 1
( ~̇β∗ × ~s)k +

1

γ + 1
~β

[
∂ ~̇β∗

∂βk
× ~s

]
(73)

and the field part of the Hamiltonian HSGT = c~β ~PSGT − LSGT is

HSGT = −µ
[
(~s ~B) +

γ2

γ + 1
(~β~s)(~β ~B)

]
+

1

γ + 1
(~s× ~β)

[
βk
∂ ~̇β∗

∂βk
− γ(γ − 1) ~̇β∗

]
. (74)

The corresponding LF force ~FSGT on the particle is, according to eqns. (17) and (35),

~FSGT = ~∇LSGT − ( ~β0~∇)c ~PSGT − ~̇PSGT − β̇m[∂ ~PSGT/∂βm] = mc(γ~β) (75)

where the dot indicates the partial derivative with respect to time.
The time derivative d~s/dt = ~Ω× ~s does not contribute to ∂ ~PSGT/∂t since

−∂PSGT,k
∂t

=
∂

∂βk

[
∂(~s · ~Ω)

∂t

]
=

∂

∂βk

[
~s · ∂

~Ω

∂t
+ ~Ω · (~s× ~Ω)

]
=

∂2~Ω

∂βk∂t
· ~s , (76)

according to eqns. (16) and (72), so that the spin ~s may be considered a constant in the
equation (75) for the SGT force.

5.2.1 Example of a Charged Particle Accelerated by the Lorentz Force

A particle with charge Ze in an electro-magnetic field ( ~E, ~B) is subject to the Lorentz force

Zec~Λ where
~Λ ≡ ~E/c+ ~β × ~B (77)

Assuming that the Lorentz force is much larger than the SGT force, i.e.

ZecBaverage � γ
e

mc
sḂaverage (78)

or

2.4 · 1020Z
mc2

MeV
� γ

fr

Hz
· s
h̄

(79)

where fr is the oscillating frequency of ~B, the resulting acceleration in the TRF is

~̇β∗ =
ν

c
~E∗∗ = ν(γ~Λ− γ2

γ + 1
~β · ε) (80)
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where ν ≡ Ze/m and ε ≡ (~β ~E)/c.
From eqns. (70), (77), and (80), we thus obtain the well-known 4) LF Lagrangian for the

spin motion of a particle of charge Ze, mass m, and gyro-magnetic factor g in an electro-
magnetic field ( ~E, ~B):

LSGT = µ

[
(~s ~B) + (~β~Σ)− γ

γ + 1
(~s~β)( ~B~β)

]
+

νγ

γ + 1

[
{~Λ− γ

γ + 1
~β(~β ~E/c)} × ~s

]
~β(81)

=

[
µ− ν γ − 1

γ

]
(~s ~B) +

[
µ− ν γ

γ + 1

]
(~β~Σ)− (µ− ν)

γ

γ + 1
(~β~s)(~β ~B) . (82)

In the LF, the particle momentum change is

d(mcγ~β)/dt = Zec~Λ; d(γ~β)/dt = γ3(~β ~̇β)~β + γ ~̇β = ν~Λ (83)

where ~̇β ≡ ~β/dt. Thus

(~β ~̇β) =
ν(~Λ~β)

γ3
=
νε

γ3
; ~̇β =

ν

γ
(~Λ− ε~β) . (84)

According to eqn. (75), the Stern-Gerlach part of ~FSGT is

~FSG = ~∇LSG − c(~β~∇)~PSG − ~̇PSG − ˙βm
∂ ~PSG
∂βm

. (85)

From eqns. (70) and (72), we obtain

1

µ
~∇LSG = ~∇(~s ~B) + ~∇(~β~Σ)− γ

γ + 1
(~β~s)~∇(~β ~B); (86)

c

µ
(~β~∇)~PSG = (~β~∇)~Σ− γ3~β

(γ + 1)2
(~β~s)(~β~∇)(~β ~B)− γ

γ + 1
[~s(~β~∇)(~β ~B) + (~β~s)(~β~∇) ~B];(87)

c

µ
~̇PSG = ~̇Σ− γ3~β

(γ + 1)2
(~β~s)(~β ~̇B)− γ

γ + 1
[~s(~β ~̇B) + (~β~s) ~̇B] (88)

and, using the relations

~̇βm · ∂γ/∂βm = γ3(~β ~̇β) = νε ; ~̇βm · ∂~β/∂βm = ~̇β = (ν/γ)(~Λ− ε~β) , (89)

we find

β̇m
µν

∂ ~PSG
∂βm

=
− 2γ3

(γ+1)3
ε~β(~β~s)(~β ~B)− γ2

(γ+1)2

[
~Λ(~β~s)(~β ~B) + ~β[(~Λ~s)(~β ~B) + (~β~s)(~Λ ~B)]

]
−

− 1
γ+1

[~s(~Λ ~B) + ~B(~Λ~s)] + γ
(γ+1)2

ε[~s(~β ~B) + ~B(~β~s)]
.

(90)

If, for simplicity, we assume that ~β point in the x-3 direction, i.e. ~β = (0; 0; β), we obtain

the force parallel to ~β,

1

µ
~FSG,‖ =

~∇‖(~s ~B) + (γ − 1)~∇‖s3B3 − 1
c
~̇Σ‖ + 1

c
γ~βs3Ḃ3+

+ν
[
−γ−1
γ+1

~E‖s3B3 + γ
γ+1

[~s‖(~Λ ~B) + ~B‖(~Λ~s)
] . (91)
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and the force perpedicular to ~β

1
µ
~FSG,⊥ = ~∇⊥[(~s ~B)− γ−1

γ
s3B3] + β(~∇⊥Σ3 −∇3

~Σ⊥)− 1
c
~̇Σ⊥ + γ−1

γ
∇3(~s⊥B3 + s3 ~B⊥)+

+ γβ
(γ+1)c

(~s⊥Ḃ3 + s3 ~̇B⊥) + ν
[
γ−1
γ+1

~Λ⊥s3B3 + 1
γ+1

[~s⊥(~Λ ~B) + ~B⊥(~Λ~s)]− γ−1
γ(γ+1)

E3[~s⊥B3 + ~B⊥s3]
]

(92)
The Thomas rotation part of the SGT force is

~FT = ~∇LT − c(~β~∇)~PT − ~̇PT − ˙βm
∂ ~PT
∂βm

. (93)

From eqns. (70) and (73), we find

1

ν
~∇LT =

γ

γ + 1
~∇[~β(~Λ× ~s)] =

γ

γ + 1
~∇[(~β ~B)(~β~s)− β2(~s ~B)− ~β~Σ] ; (94)

c

ν
(~β~∇)~PT =

γ3

(γ + 1)2
~β(~β~∇)(~Λ× ~s) · ~β +

γ

γ + 1

[
(~β~∇)~Λ× ~s+ [(~β~∇) ~B × (~s× ~β)]

]
(95)

c

ν
~̇PT =

γ3

(γ + 1)2
~β[(~̇Λ× ~s) · ~β] +

γ

γ + 1

[
(~̇Λ× ~s) + [ ~̇B × (~s× ~β)]

]
; (96)

and

β̇m
ν2

∂ ~PT
∂βm

=

−γ2(γ−1)
(γ+1)3

ε~β[~β(~Λ× ~s)] + γ2

(γ+1)2
~Λ[~β(~Λ× ~s)] + ε

(γ+1)2
(~Λ× ~s)+

+ γ2

(γ+1)2
~β[~β(~Λ× ~s)] + 1

γ+1

[
[(~Λ× ~B)× ~s] + [ ~B × (~s× ~Λ)]

]
−

− εγ2

(γ+1)2
~β{[~β × (~β × ~B)] · ~s} − ε

γ+1
[(~β × ~B)× ~s]− εγ

(γ+1)2
[ ~B × (~s× ~β)] .

(97)

For ~β = (0; 0; β), the Thomas forces become

1

ν
~FT,‖ =

γ(γ−1)
γ+1

β∇3
~Σ‖ + γ2

(γ+1)c
~̇Σ‖ + (γ − 1)~∇‖(~s⊥ ~B⊥) + γ~β(~s⊥ ~̇B⊥)+

+ν
[

2εγ
(γ+1)2

~Σ‖ +
~E‖
c

[(~s ~B)− γ−1
γ+1

(~s⊥ ~B⊥)]− γ
γ+1

~B‖(~Λ~s)− 1
γ+1

~s‖(~Λ ~B)
] (98)

and

1
ν
~FT,⊥ = γ

γ+1

[
β(∇3

~Σ⊥ − ~∇⊥Σ3) + 1
c
~̇Σ⊥ − β

c
(s3 ~̇B⊥ + ~s⊥Ḃ3)

]
− γ−1

γ
[~∇⊥(~s⊥ ~B⊥) +∇3(s3 ~B⊥ + ~s⊥B3)]+

+ν
[

γ2β
(γ+1)2

~Λ⊥Σ3 + ε
(γ+1)2

~Σ⊥ + ~Λ⊥[(~s ~B)− γ−1
γ+1

s3B3] + γ−1
γ(γ+1)

E3

c
(s3 ~B⊥ + ~s⊥B3)]− 1

γ+1
[ ~B⊥(~s~Λ) + ~s⊥( ~B~Λ)]

]
.

(99)
The total SGT force on the spin therefore is

~FSGT,‖ =

ν γ(γ−1)
γ+1

β∇3
~Σ‖ + [ν γ2

γ+1
− µ]1

c
~̇Σ‖ + ν(γ − 1)~∇‖(~s ~B) + (µ− ν)(γ − 1)~∇‖s3B3+

+µ~∇‖(~s ~B) + ν γ
~β
c

(~s ~̇B) + µ−ν
c
γ~β(s3Ḃ3)+

+ν
[
ν 2γε
(γ+1)2

~Σ‖ + ν 2
γ+1

~E‖
c

(~s ~B) + µ−ν
γ+1
{γ ~B‖(~s~Λ)− (γ − 1)

~E‖
c

(s3B3)}+ µγ−ν
γ+1

~s‖( ~B~Λ)
]

(100)
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and

~FSGT,⊥ =

(µ− ν γ
γ+1

)[β~∇⊥Σ3 − β∇3
~Σ⊥ − 1

c
~̇Σ⊥] + (µ− ν γ−1

γ
)~∇⊥(~s ~B)+

+(µ− ν)
[
γ−1
γ
{∇3(~s⊥B3 + s3 ~B⊥)− ~∇⊥s3B3}+ γβ

(γ+1)c
[~s⊥Ḃ3 + s3 ~̇B⊥]

]
+

+ν2
[
~Λ⊥

γ2β
(γ+1)2

Σ3 + ε
(γ+1)2

~Σ⊥ + ~Λ⊥(~s ~B)
]

+

+ν(µ− ν)
[

1
γ+1

[~s⊥(~Λ ~B) + ~B⊥(~Λ~s)] + γ−1
γ+1

[~Λ⊥s3B3 − E3

cγ
(~s⊥B3 + s3 ~B⊥)]

]
.

(101)
For large values of γ, these forces approach

~FSGT,‖ ≈
νγ
[
∇3
~Σ‖ + 1

c
~̇Σ‖ + ~∇‖(~s ~B) +

~β
c
(~s ~̇B) + (µ− ν){~∇‖s3B3 +

~β
c
s3Ḃ3}

]
−

−2ν∇3
~Σ‖ − ν−µ

c
~̇Σ‖ + (µ− ν)~∇‖(~s ~B)− (µ− ν)~∇‖(s3B3)+

+ν(µ− ν)
[
~B‖(~s~Λ)−

~E‖
c
s3B3

]
+ νµ~s‖( ~B~Λ) =

(102)

or

~FSGT,‖ ≈
γ~β d

dt

[
νΣ‖ + ν(~s ~B) + (µ− ν)s3B3

]
− 2ν∇3

~Σ‖ + (µ− ν)[~∇‖(~s⊥ ~B⊥)− 1
c
~̇Σ‖]+

+ν(µ− ν)
[
~B‖(~s~Λ)−

~E‖
c
s3B3

]
+ νµ~s‖( ~B~Λ) .

(103)
and

~FSGT,⊥ ≈
(µ− ν)

[
~∇⊥Σ3 −∇3

~Σ⊥ − 1
c
~̇Σ⊥ + ~∇⊥(~s ~B) +∇3(~s⊥B3 + s3 ~B⊥)− ~∇⊥(s3B3)

]
+

+µ−ν
c

(~s⊥Ḃ3 + s3 ~̇B⊥) + ν2~Λ⊥(Σ3 + ~s ~B) + ν(µ− ν)~Λ⊥s3B3 =

= (µ− ν)
[
~∇⊥(Σ3 + ~s⊥ ~B⊥) + d

dt
(~s⊥B3 + s3 ~B⊥ − ~Σ⊥)

]
+ ν~Λ⊥

[
νΣ3 + ν(~s⊥ ~B⊥) + µs3B3

]
(104)

In the FRF, ~F ∗SGT is obtained by letting ~β approach zero:

~F ∗SGT =
[ν

2
− µ

] 1

c
~̇Σ∗ + µ~∇∗(~s ~B∗) +

ν2

c
~E∗(~s ~B∗) +

ν

2c
(µ− ν)[ ~B∗(~s ~E∗) + ~s( ~B∗ ~E∗)] (105)

since ~Λ∗ = ~E∗/c; ε = 0; γ = 1.
The SGT-force is composed of two parts, one proportional to ν and µ (which are of

the same order of magnitude) which depends on space and time variations of the electro-
magnetic field, and another proportional to ν2 and νµ depending on the field itself. Since
ν = Ze/m for charged particles is largest for electrons, the ratio of the two parts of the force
is larger by more than two orders of magnitude than for the next heavier charged particle,
the muon. At the same time, µ− ν is about three orders of magnitude smaller than ν or µ
for electrons and muons. It is useful therefore to list the components of the SGT-force for
electrons and muons neglecting the (µ− ν)-terms:

~FSGT,‖;el. ≈
ν
[
γ(γ−1)
γ+1

β∇3
~Σ‖ + γ2−γ−1

(γ+1)c
~̇Σ‖ + γ~∇‖(~s ~B) + γ~β

c
(~s ~̇B)

]
+

+ν2
[

2γε
(γ+1)2

~Σ‖ + 2
(γ+1)2

~E‖(~s ~B) + γ−1
γ+1

~s‖( ~B~Λ)
] (106)
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and

~FSGT,⊥;el. ≈
ν
[

β
γ+1

[~∇⊥Σ3 −∇3
~Σ⊥]− 1

(γ+1)c
~̇Σ⊥ + 1

γ
~∇⊥(~s ~B)

]
+

+ν2
[
~Λ⊥{ γ2β

(γ+1)2
Σ3 + (~s ~B)}+ ε

(γ+1)2
~Σ⊥

] (107)

where, for γ � 1,

~FSGT,‖;el. ≈ νγ

[
∇3
~Σ‖ +

1

c
~̇Σ‖ + ~∇‖(~s ~B) +

1

c
(~s ~̇B)

]
− 2ν[∇3

~Σ‖ +
1

c
~̇Σ‖] + ν2~s‖( ~B~Λ) (108)

and
~FSGT,⊥;el. ≈ ν2~Λ⊥[Σ3 + (~s ~B)] , (109)

and where the FRF value of ~F ∗SGT is

~F ∗SGT = − ν

2c
~̇Σ∗ + ν ~∇∗(~s ~B∗) +

ν2

c
~E∗(~s ~B∗) . (110)

For a particle traversing a localized force field as mentioned at the end of chapter 4, the
net SGT force ~FSGT,net = ~∇LSGT affecting the total momentum change integrated over the
traversal is, according to eqns. (81), (86), and (94),

~FSGT,net =

[
ν
γ − 1

γ
− µ

]
~∇(~s ~B) +

[
µ− ν γ

γ + 1

]
~∇(~β~Σ)− (µ− ν)(~β~s)~∇(~β ~B) (111)

which, for large γ, becomes approximately proportional to µ− ν and is therefore suppressed
by 1/γ for electrons down to a minimal value comparable to the value for protons
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7 Appendix

7.1 Lorentz Transform of the Space-Time 4-Vector and Velocity

Beginning in frame 1 with the infinitesimal space-time 4-vector (cdt∗; ~dx∗) and the velocity

c ~β∗ = ~dx∗/dt∗ in this frame, we Lorentz-boost this 4-vector by a velocity −c ~β0 into frame

2 to obtain the boosted 4-vector (cdt; ~dx) and the velocity c~β = ~dx/dt relative to frame 2,
where

cdt = γ0cdt
∗ + γ0 ~β0 · ~dx∗; ~dx = ~dx∗ + φγ0 ~β0( ~β0 · ~dx∗) + γ0 ~β0cdt

∗ (112)

so that

~β =
~β∗ +

γ20
γ0+1

~β0( ~β0 · ~β∗) + γ0 ~β0

γ0(1 + ~β0 · ~β∗)
; ~β∗ =

~β + φγ0 ~β0( ~β0 · ~β)− γ0 ~β0
γ0(1− ~β0 · ~β)

. (113)

From these relations between frame-1 and frame-2 velocities, a number of other useful rela-
tions may be derived, such as:

~β0 · ~β =
~β0( ~β∗ + ~β0)

1 + ~β0 · ~β∗
; ~β0 · ~β∗ =

~β0(~β − ~β0)

1− ~β0 · ~β
(114)

and

1

γ2
=
γ20(1 + ~β0 ~β∗)

2 − ~β∗
2
− φ(γ20 − γ0)( ~β0 ~β∗)2 − γ20 ~β0

2
− 2φγ0( ~β0 ~β∗)

2 − 2γ0 ~β0 ~β∗ − 2(γ20 − γ0) ~β0 ~β∗

γ20(1 + ~β0 ~β∗)2

(115)
or

γ2 =
γ20(1 + ~β0 ~β∗)

2

1− ~β∗
2

+ 2γ0[γ0 − 1− γ0 + 1] ~β0 ~β∗ − φ[γ20 − γ0 + 2γ0 − γ20 − γ0]( ~β0 ~β∗)2
(116)

= γ∗2 · γ20(1 + ~β0 ~β∗)
2 , (117)

so that

γ = γ∗γ0(1 + ~β0 ~β∗); γ∗ = γγ0(1− ~β0~β); γ20(1 + ~β0 ~β∗)(1− ~β0~β) = 1 (118)

and

~β =
γ∗

γ

[
~β∗ + φγ0 ~β0( ~β0 ~β∗) + γ0 ~β0

]
; ~β∗ =

γ

γ∗

[
~β + φγ0 ~β0( ~β0~β)− γ0 ~β0

]
. (119)

The partial derivatives of ~β with respect to ~β∗ are

∂β`
∂β∗k

=
γ∗

γ
δk` +

γ∗2γ0
γ2

[
φγ0β0`β0k(1 + ~β0 ~β∗)− β0k[β∗` + φγ0β0`( ~β0 ~β∗) + γ0β0`]

]
(120)

=
γ∗

γ
δk` −

γ∗2

γ2
γ0β0k [φβ0` + β∗` ] . (121)
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Inversely, by replacing ~β∗ with ~β and ~β0 with − ~β0 (see eqn. (86)), we find

∂β∗`
∂βk

=
γ

γ∗
δk` −

γ2

γ∗2
γ0β0k [φβ0` − β`] =

γ

γ∗
[δk` + γ0φβ0kβ0` + γ0β0kβ

∗
` ] . (122)

For ~β∗ −→ 0 (rest frame), these derivatives become

∂β`
∂β∗k

=
δk`
γ0
− β0kβ0`
γ0 + 1

;
∂β∗`
∂βk

= γ0δk` + φγ20β0kβ0` . (123)

If ~β0 points in the x3-direction ( ~β0 = 0; 0; β0), we obtain

∂β`
∂β∗k

=
γ∗

γ
δk` −

γ∗2

γ2
γ0β0δk3[φβ0δ3` + β∗` ] (124)

=
γ∗

γ
δk`

[
1− γ∗

γ
(γ0 − 1)δk3

]
− γ∗2

γ2
γ0β0β

∗
` δk3 (125)

which, for β0` = β0δ3` and ~β∗ −→ 0, becomes

∂β`
∂β∗k

=
δk`
γ0

[
1− γ0 − 1

γ0
δk3

]
. (126)

7.2 Canonical Property of the Lorentz Transform of the Energy-
Momentum 4-Vector (H∗; c ~P ∗)

The space component ~P ∗ of the energy-momentum 4-vector (H∗; c ~P ∗) defined in Section 2 is
the canonically conjugate momentum of the Hamiltonian H∗ and is defined by the Hamilton
canonical equations 1) [

∂H∗

∂P ∗k

]
~x∗,t∗

= cβ∗k ;

[
∂H∗

∂x∗k

]
~P ∗,t∗

= −dP
∗
k

dt∗
. (127)

Alternatively, we may define the associated Lagrangian L∗ as

L∗ ≡ c ~β∗ · ~P ∗ −H∗ . (128)

The partial derivative with respect to β∗k is[
∂L∗

∂β∗k

]
~x∗,t∗

= cP ∗k + cβ∗m

[
∂P ∗m
∂β∗k

]
~x∗,t∗
−
[
∂H∗

∂β∗k

]
~x∗,t∗

. (129)

Since, according to eqn. (100),[
∂H∗

∂β∗k

]
~x∗,t∗

=

[
∂H∗

∂P ∗m

]
~x∗,t∗

[
∂P ∗m
∂β∗k

]
~x∗,t∗

+

[
∂H∗

∂x∗m

]
~P ∗,t∗

[
∂x∗m
∂β∗k

]
~x∗,t∗

+

[
∂H∗

∂t∗

]
~x∗, ~P ∗

[
∂t∗

∂β∗k

]
~x∗,t∗

=
∂P ∗m
∂β∗k

cβ∗m

(130)
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so that

c ~β∗m

[
∂P ∗m
∂β∗k

]
~x∗,t∗
−
[
∂H∗

∂β∗k

]
~x∗,t∗

= 0 , (131)

we obtain the relation
∂L∗

∂β∗k
= cP ∗k . (132)

Furthermore, since[
∂H∗

∂x∗k

]
~β∗,t∗

=

[
∂H∗

∂x∗k

]
~P ∗,t∗

+

[
∂H∗

∂P ∗m

]
~x∗,t∗

[
∂P ∗m
∂x∗k

]
~β∗,t∗

= −dP
∗
k

dt
+ cβ∗m

[
∂P ∗m
∂x∗k

]
~β∗,t∗

, (133)

we find the Lagrange relation[
∂L∗

∂x∗m

]
~β∗,t∗

= cβ∗m

[
∂P ∗m
∂x∗k

]
~β∗,t∗
−
[
∂H∗

∂x∗k

]
~β∗,t∗

=
dP ∗k
dt

. (134)

Therefore, the Lagrangian relations (105) and (107) are equivalent to the Hamiltonian canon-
ical equations (100).

The Lorentz-boosted Lagrangian of eqn. (16) is, in terms of the frame-1 Hamiltonian H∗

and its canonical frame-1 momentum ~P ∗,

L =
γ∗

γ
L∗ =

γ∗

γ
β∗mcP

∗
m −

γ∗

γ
H∗ . (135)

The corresponding canonical frame-2 momentum is therefore

∂L

∂βk
=

∂

∂βk

(
γ∗

γ
β∗m

)
cP ∗m −

∂

∂βk

(
γ∗

γ

)
H∗ +

[
γ∗

γ
β∗m

c∂P ∗m
∂β∗`

− γ∗

γ

∂H∗

∂β∗`

]
∂β∗`
∂βk

(136)

where the term in square parentheses is zero according to eqn. (104). Therefore, using eqns.
(91) and (92), we obtain

∂L

∂βk
=

∂

∂βk

[
βm + φγ0β0,m( ~β0~β)− γ0β0,m

]
cP ∗m −

∂

∂βk
[γ0(1− ~β ~β0)]H

∗ (137)

or
∂L

∂βk
= cP ∗k + φγ0β0,k( ~β0c ~P ∗) + γ0β0,kH

∗ = cPk . (138)

The frame-2 Hamiltonian H is, according to eqn. (16),

H =
βkcP

∗
k + φγ0( ~β0 ~β)( ~β0c ~P ∗) + γ0( ~β0~β)H∗−

−c~β ~P ∗ − φγ0( ~β0~β)( ~β0c ~P ∗) + γ0( ~β0 ~P ∗) + γ0(1− ~β ~β0)H
∗ (139)

or
H = γ0H

∗ + γ0( ~β0c ~P ∗) (140)

The frame-1 Hamiltonian H∗ and its canonically conjugate frame-1 momentum ~P ∗ transform,
according to eqns. (111) and (113), to the Lorentz-boosted frame-2 Hamiltonian H and its

canonically conjugate momentum ~P like the components of an energy-momentum 4-vector
(H; c ~P ). The Lorentz boost is therefore a canonical transformation..
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7.3 Thomas Effect of an Infinitesimal Velocity on Vectors in a
Lorentz-Boosted Rest Frame

A Lorentz boost A( ~β0) of a 4-vector v by a velocity c ~β0 from the laboratory frame (LF)

results in a 4-vector v0 = A( ~β0)v. After a further boost A( ~β∗) by an infinitesimal velocity

c ~β∗, we obtain a 4-vector ṽ∗:
ṽ∗ = A( ~β∗)A( ~β0)v . (141)

A direct Lorentz boost of v to a frame with the same velocity relative to the LF as the
ṽ∗-frame results in a 4-vector v∗:

v∗ = A( ~β0 + δ~β)v (142)

with v∗0 = ṽ∗0. The relation between ṽ∗ and v∗ can be expressed as ṽ∗ = Ãv∗ where

Ã = A( ~β∗)A( ~β0)A(− ~β0 − δ~β) . (143)

If ~β0 points in the x3-direction, we find

A( ~β0) =


γ0 0 0 −γ0β0
0 1 0 0
0 0 1 0

−γ0β0 0 0 γ0

 ; A( ~β∗) =


1 −β∗1 −β∗2 −β∗3
−β∗1 1 0 0
−β∗2 0 1 0
−β∗3 0 0 1

 (144)

neglecting terms of order β∗2k , so that

A( ~β∗)A( ~β0) =


γ0 + γ0β0β

∗
3 −β∗1 −β∗2 −γ0β0 − γ0β∗3

−γ0β∗1 1 0 γ0β0β
∗
1

−γ0β∗2 0 1 γ0β0β
∗
2

−γ0β0 − γ0β∗3 0 0 γ0 + γ0β0β
∗
3

 +O(~β∗2) . (145)

Since

A( ~β0 + δ~β) =


γ0 + γ30β0δβ3 −γ0δβ1 −γ0δβ2 −γ0β0 − γ30δβ3
−γ0δβ1 1 0 φγ0β0δβ1
−γ0δβ2 0 1 φγ0β0δβ2

−γ0β0 − γ30δβ3 0 0 γ0 + γ30β0δβ3

 +O(~β∗2) , (146)

we require γ0δβ1 = β∗1 ; γ0δβ2 = β∗2 ; γ20δβ3 = β∗3 to satisfy the condition v∗0 = ṽ∗0 and obtain

Ã =


1 0 0 0
0 1 0 φβ0β

∗
1

0 0 1 φβ0β
∗
2

0 −φβ0β∗1 −φβ0β∗2 1

 +O(~β∗2) . (147)

Therefore, Ã represents the sum of two rotations around the x1- and x2-axes by the infinites-

imal angles φβ0β
∗
2 and φβ0β

∗
1 , respectively, from the vector ~v∗ to the vector ~̃v∗. This may be

summarized for arbitrary directions of ~β0 by the relation

~̃v∗ = ~v∗ + φ
[
~v∗ × ( ~β∗ × ~β0)

]
+O(~β∗2) (148)

which represents a rotation of ~v∗ around the ~β∗× ~β0 -axis by an infinitesimal angle φ·| ~β∗× ~β0|.
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