Optical vortex Iaser measurement

Yoshitaka Taira

National Institute of Advanced Industrial Science and Technology (AIST)

Laser and CCD camera

Laser: World Star Tech
Wavelength: 532 nm
Power: < 5 mW
Beam size: $0.54 \mathrm{~mm}(\mathrm{H}), \mathbf{0 . 5 9 \mathrm { mm } (\mathrm { V }) \text { at FWHM }}$
Camera: COHU, Model 4812
Pixel size: $0.0135 \mathrm{~mm} / \mathrm{px}$
Pixel: 512 (H), 480 (V)

Coordinate system

Coordinate system of the calculated result should be reversed to compare with the measurement results.

Diffraction pattern

Grating

OAM value $=m \times n$
(m is the charge of grating, n is the diffraction order)

List of gratings

Grating\#	Charge, m	Lines /mm	Diff. angle (mrad)	Scat. angle (mrad)
27A	1	30 ± 2	13.9 ± 0.4	1.8 ± 0.3
26A	1	30 ± 2	14.7 ± 0.1	2.1 ± 0.2
24A	2	30 ± 2	14.8 ± 0.1	2.2 ± 0.3
2A	2	22 ± 2	10.6 ± 0.1	2.3 ± 0.2
34A	3	30 ± 2		
9A	3	22 ± 2		Charge, $m=2$
35A	4	30 ± 2		
10A	4	22 ± 2		
33A	5	30 ± 2		
11A	5	22 ± 2		
29A	10	30 ± 2		
Lines per mm was measured with a				
optical microscope and microscale.				

Power measurement

Pin $=4.59 \mathrm{~mW}$
Power of diffracted beam ($\mathrm{n}=0$ and $\mathrm{n}=1$) was measured.

Power of non diffracted beam increases as the Ipm is large.
Power of $\mathrm{n}=1$ beam increases as the Ipm in small (except 0AM =4) and differs even if same $0 A M$ value ($0 A M=1$).

Interference pattern measurement

1. $\mathbf{O A M}+$ reference $(R=215 \mathrm{~mm})$
2. OAM + reference $(R=\infty)$
3. OAM (double gratings) + reference $(\mathbf{R}=\mathbf{2 1 5} \mathrm{mm})$
4. OAM + OAM

Interference pattern with lens

Reference light

Interference pattern

OAM
value

Reference light
OAM light
Interference
-1

-2

Calculation of interference pattern

Interference between two different electric fields

$$
\begin{aligned}
& E_{1} \exp \left(i \phi_{1}\right) \quad E_{2} \exp \left(i \phi_{2}\right) \\
& I=\mid E_{1} \exp \left(i \phi_{1}\right)+E_{2} \exp \left(i \phi_{2}\right)^{2}=E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2} \cos \left(\phi_{1}-\phi_{2}\right)
\end{aligned}
$$

Gaussian beam (reference light)

$E=E_{0} \frac{\omega_{0}}{\omega(z)} \exp \left(-\frac{r^{2}}{\omega^{2}(z)}\right) \exp \left\{-i\left(k z+k \frac{r^{2}}{2 R(z)}-\psi(z)\right)\right\}$
$\omega(z)=\omega_{0} \sqrt{1+\left(\frac{z}{z_{R}}\right)^{2}} \quad$ Beam radius
$R(z)=z\left\{1+\left(\frac{z_{R}}{z}\right)^{2}\right\} \quad$ Rradius of curvature of the beam's wavefront
$z_{R}=\frac{\pi \omega_{0}^{2}}{\lambda} \quad$ Rayleigh range
$\psi(z)=\tan ^{-1}\left(\frac{z}{z_{R}}\right) \quad$ Gouy phase
$\omega_{0}=0.053 \mathrm{~mm} \quad$ Waist size when the laser is focused by a f100 lens

Laguerre Gaussian beam (OAM light)

$$
\begin{aligned}
E= & \frac{C}{\sqrt{1+\left(z / z_{R}\right)^{2}}}\left(\frac{r \sqrt{2}}{\omega(z)}\right)^{|m|} L_{p}^{m}\left(\frac{2 r^{2}}{\omega^{2}(z)}\right) \exp \left(-\frac{r^{2}}{\omega^{2}(z)}\right) \\
& \times \exp \left\{-i \frac{k r^{2} z}{2\left(z^{2}+z_{R}^{2}\right)}\right\} \exp (-i m \phi) \exp \left\{i(2 p+m+1) \tan ^{-1} \frac{z}{z_{R}}\right\}
\end{aligned}
$$

$L_{p}^{m}(x) \quad$ Laguerre polynominal, \mathbf{m} is OAM value
$L_{0}^{m}(x)=1$

Interference pattern: OAM = -1

Reference light

OAM light

Interference pattern: OAM = -2

OAM light

Interference

OAM value is inverted. Why?

But, we can explain the spiral interference pattern. This is due to a finite curvature of the wave front.

Interference pattern without lens

Interference pattern w/o lens

OAM value

I cannot understand why the interference pattern become fork, but..

Interference pattern w/o lens

If the beam intersects another beam at angle, alpha, Gaussian beam can be expressed as
$E=E_{0} \frac{\omega_{0}}{\omega(z)} \exp \left(-\frac{r^{2}}{\omega^{2}(z)}\right) \exp \left\{-i\left(k z \cos \alpha+k x \sin \alpha+k \frac{r^{2}}{2 R(z)}-\psi(z)\right)\right\}$
The term kxsin(alpha) induce fork interference pattern, and the pattern will change by the value of alpha.

Changing crossing angle: OAM = -1

Chaning crossing angle: OAM = -2

What will happen if OAM laser injects

Grating

Interference pattern using double gratings

Interference pattern

OAM G1 = -1
OAM G2 = -1

OAM G1 = -1
OAM G1 = -1
OAM G2 =0
OAM G2 =+1
$0 A M=-1$

Profile of the beam from G2

Interference pattern

OAM G1 = -1
OAM G2 = -2

OAM = -3

OAM G1 = -1
OAM G1 = -1
OAM G2 = 0
OAM G2 = +2

OAM

Interference pattern

OAM G1 $=-2$
OAM G2 $=-1$
$0 A M=-3$

OAM G1 = -2
OAM G1 = -2
0AM G2 =+1

Interference pattern

OAM G1 = +2 OAM G2 = -1

OAM = +1

OAM G1 = +2
OAM G1 = +2

OAM G2 = +1
OAM G2 = 0

0 MM $=+1$

$0 A M=+2$
$0 A M=+3$

Interference pattern

OAM value is preserved.

Interference pattern between OAM laser

Interference pattern with reference laser

OAM value = -1: Right hand spiral interference is produced
0AM laser from G1 and reference laser (without G2)

OAM laser from G2 and reference laser (without G1)

OAM value from G2 is inverted.

Interference pattern

OAM value (value of G2 is inverted from the actual value)

G1 = -1
G2 = +1

G1 = -1
G2 =-1

Interference pattern

G1 $=-1$
G2 = -2

Interference pattern

Fabry Perot cavity with OAM Iaser

Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling

Y. Zhang et al., Opt. Exp., 245514 (2016).

Hall A, C or Hall D?

Hall A, C

Merit:
Low cost (polarimeter exists). Demerit:
Many restriction?

Beam line to Hall D

Merit:
Free access.
Demerit:
High cost? (Laser injection
sysytem should be constructed.)

Schedule

