

7/22/2016

Optical vortex laser measurement

Yoshitaka Taira

National Institute of Advanced Industrial Science and Technology (AIST)

Laser and CCD camera

Laser: World Star Tech Wavelength: 532 nm Power: < 5 mW Beam size: 0.54 mm (H), 0.59 mm(V) at FWHM

Camera: COHU, Model 4812 Pixel size: 0.0135 mm/px Pixel: 512 (H), 480 (V)

Coordinate system

Coordinate system of the calculated result should be reversed to compare with the measurement results.

Diffraction pattern

OAM value = m×n

(m is the charge of grating, n is the diffraction order)

List of gratings

Grating #	Charge, m	Lines /mm	Diff. angle (mrad)	Scat. angle (mrad)
27A	1	, 30 ± 2	13.9 ± 0.4	1.8 ± 0.3
26A	1	30 ± 2	14.7 ± 0.1	2.1 ± 0.2
24A	2	30 ± 2	14.8 ± 0.1	2.2 ± 0.3
2A	2	22 ± 2	10.6 ± 0.1	2.3 ± 0.2
34A	3	30 ± 2		
9A	3	22 ± 2		
35A	4	30 ± 2	Charge m	x = 2
10A	4	22 ± 2	charge, n	
33A	5	30 ± 2		
11A	5	22 ± 2		
29A	10	30 ± 2		

Lines per mm was measured with a optical microscope and microscale.

Power measurement

Pin = 4.59 mW Power of diffracted beam (n = 0 and n = 1) was measured.

Power of non diffracted beam increases as the lpm is large. Power of n=1 beam increases as the lpm in small (except OAM = 4) and differs even if same OAM value (OAM = 1).

- **1. OAM + reference (R = 215 mm)**
- 2. OAM + reference ($R = \infty$)
- 3. OAM (double gratings) + reference (R = 215 mm)

4. OAM + OAM

Interference pattern with lens

Calculation of interference pattern

Interference between two different electric fields

 $E_1 \exp(i\phi_1) \qquad E_2 \exp(i\phi_2)$

 $I = |E_1 \exp(i\phi_1) + E_2 \exp(i\phi_2)|^2 = E_1^2 + E_2^2 + 2E_1E_2 \cos(\phi_1 - \phi_2)$

Gaussian beam (reference light)

$$E = E_0 \frac{\omega_0}{\omega(z)} \exp\left(-\frac{r^2}{\omega^2(z)}\right) \exp\left\{-i\left(kz + k\frac{r^2}{2R(z)} - \psi(z)\right)\right\}$$

$$\omega(z) = \omega_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2}$$

Beam radius

Rradius of curvature of the beam's wavefront

Z_R	=	$\pi\omega_0^2$
		λ

Rayleigh range

$$\psi(z) = \tan^{-1}\left(\frac{z}{z_R}\right)$$
 Gouy phase

 $\omega_0 = 0.053 \text{ mm}$ Waist size when the laser is focused by a f100 lens

Laguerre Gaussian beam (OAM light)

$$E = \frac{C}{\sqrt{1 + (z/z_R)^2}} \left(\frac{r\sqrt{2}}{\omega(z)}\right)^{|m|} L_p^m \left(\frac{2r^2}{\omega^2(z)}\right) \exp\left(-\frac{r^2}{\omega^2(z)}\right)$$
$$\times \exp\left\{-i\frac{kr^2z}{2(z^2 + z_R^2)}\right\} \exp\left(-im\phi\right) \exp\left\{i(2p + m + 1)\tan^{-1}\frac{z}{z_R}\right\}$$

 $L_p^m(x)$ Laguerre polynominal, m is OAM value $L_0^m(x) = 1$

Interference pattern: **OAM** = -1

Interference pattern: **OAM** = -2

OAM lightInterferenceImage: Descent of the second of the

OAM value is inverted. Why?

But, we can explain the spiral interference pattern. This is due to a finite curvature of the wave front.

Interference pattern without lens

Interference pattern w/o lens

I cannot understand why the interference pattern become fork, but..

Interference pattern w/o lens

If the beam intersects another beam at angle, alpha, Gaussian beam can be expressed as

$$E = E_0 \frac{\omega_0}{\omega(z)} \exp\left(-\frac{r^2}{\omega^2(z)}\right) \exp\left\{-i\left(kz\cos\alpha + kx\sin\alpha + k\frac{r^2}{2R(z)} - \psi(z)\right)\right\}$$

The term kxsin(alpha) induce fork interference pattern, and the pattern will change by the value of alpha.

Changing crossing angle: OAM = -1

Chaning crossing angle: OAM = -2

What will happen if OAM laser injects

Interference pattern using double gratings

22

Profile of the beam from G2

OAM G1 = -1 OAM G2 = -2	OAM G1 = -1 OAM G2 = 0	OAM G1 = -1 OAM G2 = +2
OAM = -3	0AM = -1	OAM = +1

OAM G1 = +2 OAM G2 = -1	OAM G1 = +2 OAM G2 = 0	OAM G1 = +2 OAM G2 = +1
OAM = +1	OAM = +2 /	OAM = +3

OAM value is preserved.

Interference pattern between OAM laser

Interference pattern with reference laser

OAM value = -1: Right hand spiral interference is produced

OAM laser from G1 and reference laser (without G2)

OAM laser from G2 and reference laser (without G1)

OAM value from G2 is inverted.

OAM value (value of G2 is inverted from the actual value)

-1.5 4 3.5 -1 3 -0.5 2.5 Y (mm) G1 = -10 2 G2 = +11.5 0.5 1 1 0.5 1.5 Λ 0.5 1.5 -1.5 -0.5 0 1 -1 X (mm) -1.5 4 3.5 -1 3 -0.5 2.5 Y (mm) G1 = -10 2 G2 = -11.5 0.5 1 1 0.5 1.5 0 -1.5 -0.5 0.5 1.5 -1 0 1 X (mm)

Fabry Perot cavity with OAM laser

Y. Zhang et al., Opt. Exp., 24 5514 (2016).

Hall A, C or Hall D?

Hall A, C

Merit: Low cost (polarimeter exists). Demerit: Many restriction?

Beam line to Hall D

Merit: Free access. Demerit: High cost? (Laser injection sysytem should be constructed.)

Schedule

