Optimization of polarized positron target thickness

Sami HABET • 17/03/2021

Parameters

Thickness

- Tungsten target
- Z=74
- Thickness = $100 \, \mu \text{m}$

Initial electron beam

- Kinetic energy = 10 MeV/c
- Px=0,
- Py=0
- Pz=10 MeV/c

Steps

1 Positrons analysis Positrons yield and FOM

2 Validation of results

Comparing with Dumas's results

3 Setting optimum thickness

According to the angular cuts and the

momentum acceptance

Positrons efficiency & FOM

- 1. efficiency=N Positron/N electrons
- 2. FOM=yield *P**2

Duma's results

<u>×10^{−6}</u> 1.8 <u>A P</u>=+/-2.5% Tudd1 ⊎ bin size= 0.1 1.2 0.8 0.6 0.4 0.2 00 0.7 0.8 0.9 0.6 1 \mathbf{P}_{+}

Using last Geant4 release

Using last Geant4 release

Duma's results

T₁=10 MeV, t=100 μm, Z=74

e+ optimum Efficiency

e+ optimum FoM

e+ optimum Efficiency

e+ optimum FoM

Optimum efficiency e+

Optimum FOM for e+

e+ momentum at efficiency optimum e+ momentum at FOM optimum

e+ Polarization at efficiency optimum e+ Polarization at FOM optimum

Target thickness

- Using momentum selection to increase FOM.
 - The angular cuts does influence the yield production.
 - The optimum target thickness increase with theta.
- The stairs shape is due to the less number of simulations.

