Commissioning of the Compton transmission polarimeter

G. Blume

Old Dominion University

February 22, 2023

Cover the results/scans from a 3 week commissioning study

- Beam Polarization from Mott Scattering Polarimeter
- The Compton Transmission Polarimeter
- Results of the commissioning study

Used Mott polarimeter at 180 keV to measure beam polarization from bulk GaAs

$$
\begin{align*}
& P_{b}=\frac{A_{0}}{S(E)}=\frac{15.926 \%}{0.426135} \tag{1}\\
& P_{b}=37.4 \pm 0.9 \% \tag{2}
\end{align*}
$$

Compton Transmission Polarimeter

Main components include: radiator, collimator, polarized target (magnet), and detector

(a) Cad Model of COMTRA

(b) COMTRA as commissioned

Asymmetry was studied as a function of magnet current for 5 and 7 MeV looking for analyzing power (A)

$$
\begin{equation*}
\epsilon=P_{b} P_{t} A \tag{3}
\end{equation*}
$$

(a) S-Curve at 5 MeV

(b) S-Curve at 7 MeV

Results - Stability (Calibration) runs

Asymmetry should remain constant throughout an entire day of operation
At running parameters (5nA beam, $\pm 5 \mathrm{~A}$ magnet current) asymmetry was recorded over a full run day

(a) PMT Asymmetry stability at 5 MeV

Relative Stability Run
(b) PMT Asymmetry stability at 7 MeV

We calculate an effective analyzing power at operational parameters

$$
\begin{equation*}
A_{e f f}=P_{\mathrm{t}} A \tag{4}
\end{equation*}
$$

P_{t} is constant due to an unchanging magnet current. Calculations of COMTRA's effective analyzing power at 5 and 7 MeV respectively yield

$$
\begin{align*}
& A_{e f f}=\frac{\epsilon}{P_{b}} \Longrightarrow \frac{0.449412 \pm 0.003479 \%}{37.4 \pm 0.9 \%}=0.0120 \pm 0.0003 \tag{5}\\
& A_{e f f}=\frac{\epsilon}{P_{b}} \Longrightarrow \frac{0.461400 \pm 0.002411 \%}{37.4 \pm 0.9 \%}=0.0124 \pm 0.0003 \tag{6}
\end{align*}
$$

Peak Location, Asymmetry, and Sigma were studied as a function of beam current for 5 and 7 MeV beginning with the peak location

Linear behavior is expected, more current gives more events which produces more signal!

(a) PMT Peak Location I-scan at 5 MeV

(b) PMT Peak Location I-scan at 7 MeV

Quantities are found for both the PMT signal as well as the BCM

(a) BCM Peak Location I-scan at 5 MeV

(b) BCM Peak Location I-scan at 7 MeV

Asymmetry is only a function of beam polarization which does not depend on

 beam current!
(a) PMT Asymmetry I-scan at 5 MeV

(b) PMT Asymmetry I-scan at 7 MeV

Asymmetry on the BCM reflects asymmetry on the beam to which there should be none!

A Gaussian fit is used to find the asymmetry which has an associated σ

(a) PMT Sigma I-scan at 5 MeV

(b) PMT Sigma I-scan at 7 MeV
σ is expected to fall off as $1 / \sqrt{N}$ where N is the number of events.
Increasing beam current increased the number of events linearly, so we expect to see $1 / \sqrt{I_{b}}$

(a) BCM Sigma I-scan at 5 MeV

(b) BCM Sigma I-scan at 7 MeV

Results - Position Scan

PMT Asymmetry was studied at 5 locations relative to the operating "center"

(a) PMT Asymmetry for a relative position at 5 MeV

Asymmetry was studied over a range of beam sizes (otherwise unchanged)
The asymmetry is plotted against the beam size plotted as radius. This is approximating a cylindrical beam.

(a) PMT Asymmetry against spot size at 5 MeV

(b) BCM Asymmetry against spot size at 5 MeV

Questions?

Thank you for your time!

Spectra

Example Spectra for a good run at 5 MeV as a function of channel (FADC)

(a) Spectra at optimal operational parameters

Spectra

Example Spectra for a good run at 5 MeV as a function of channel (FADC)

(a) Spectra at optimal operational parameters

Quick plot of the real beams against the circular approximations

(a) Beam size approximations

