Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler

Milestones

Riad Suleiman and Matt Poelker

July 7, 2015
Year 1 Milestones

- **Q1 (Oct, Nov, Dec):**
 1. HV condition gun at 350 kV and commission k$_2$CsSb preparation chamber
 2. Design beamline to locate magnets and diagnostics at optimum positions
 3. Design gun solenoid magnet or Helmholtz coil-pair
 4. Design skew quad magnets and slits

- **Q2 (Jan, Feb, Mar):**
 1. Connect existing beamline to gun and complete hot checkout
 2. Relocate old CEBAF arc dipole power supply to GTS
 3. Procure gun solenoid magnet or Helmholtz coil-pair
 4. Procure skew quad magnets and slits

- **Q3 (Apr, May, Jun):**
 1. Commission exiting beamline with beam
 2. Measure photocathode lifetime at 5 mA and 350 kV (not magnetized)

- **Q4 (Jul, Aug, Sep):**
 1. Assemble new beamline and commission with beam
 2. Install gun solenoid magnet or Helmholtz coil-pair
Year 2 Milestones

• Q1 (Oct, Nov, Dec):
 1. Generate magnetized beam
 2. Measure mechanical angular momentum vs magnetization and laser size
 3. Benchmark simulation against measurements

• Q2 (Jan, Feb, Mar):
 1. Measure mechanical angular momentum vs bunch charge and bunch length
 2. Benchmark simulation against measurements

• Q3 (Apr, May, Jun):
 1. Generate very high currents magnetized beam and study beam transport vs electron bunch charge

• Q4 (Jul, Aug, Sep):
 1. Measure photocathode lifetime vs magnetization at 5 mA and 350 kV
 2. Study beam halo and beam loss vs magnetization
Year 3 Milestones

- **Q1 (Oct, Nov, Dec):**
 1. Generate flat beam with three skew quads – RTFB Transformer – and measure horizontal and vertical emittances using slit method

- **Q2 (Jan, Feb, Mar):**
 1. Measure RTFB transformation versus electron bunch charge
 2. Use simulation to quantify how good or complete RTFB transform

- **Q3 (Apr, May, Jun):**
 1. Change to HV Supply of 32 mA and 200 kV

- **Q4 (Jul, Aug, Sep):**
 1. Measure photocathode lifetime vs magnetization at 32 mA and 200 kV
 2. Study beam halo and beam loss vs magnetization