e^+ QWT : Polarized mode

Sami Habet

IJCLab.

JLab.

January 2023

Sami Habet

(IJCLAB & JLab)

2 Cavities optimization

Sami Habet

(IJCLAB & JLab)

January 2023

イロト イヨト イヨト イヨト

2 Cavities optimization

Sami Habet

(IJCLAB & JLab)

January 2023

< □ > < □ > < □ > < □ > < □ >

Using optimized field combination in the QWT we were able to :

- Decrease the angular transverse spread.
- Rotate the transverse phase space (x, xp) and (y, yp) at the exit of the QWT.

- $B_1 = 2.5 T$
- $B_2 = 0.5 T$
- $L_1 = 0.35 m$ • $L_2 = 5.1 m$

- Cavities configuration
 - $f = 1497 \ Mhz$
 - $E = 1 \ MV/m$

•
$$L_{cell} = 0.2 \ cm$$

• We want to collect a small dp/p

• The variation of B_2 is important to set the energy dispersion.


```
Jefferson Lab
```

Second solenoid

- As expected, the QWT works as an energy filter
- Because od the harmonics function in the QWT volume acceptance, particles at lower energies goes through the collection system.

Beam line parameters

-	Params		Value	
-	$E_{e^{-}}$		120 MeV	
	Target thic	ckness	4 mm	
	QWT : <i>B</i> ₁		2.5 T	
	$QWT: L_1$		0.25 m	
	QWT : <i>B</i> ₂		0.05 T	
	QWT : <i>L</i> ₂		5.4 m	
	Frequency		1497 Mhz	
	Cavity Gra	dient	$1 { m MV/m}$	
	Cavity leng	gth	0.2 m	
	Matching section Matching section: quad leng		4 quadrupoles	
			0.15 m	
	Matching :	section : Q_1	0.0276 kG/cm	
	Chicane di	pole length	0.5 m	
	Beam pipe	radius	0.03 m	Jefferson Lab
collimator radius			, _ , 0.012 m , ,	■▶ ■ つへぐ
Sami Ha	bet	(IJCLAB & JLab)	January 20	23 7 / 25

Cavities configuration

- $f = 1497 \ Mhz$
- E = 1 MV/m
- $L_{cell} = 0.2 \ cm$
- $r_{cell} = 3 \ cm$

Goal

• Reduce the energy spread of the accepted e^+ @ p = 60 MeV/c

Optimization method

- Track e^+ distribution using the QWT and the accelerating section.
- Set the on-crest mode to the smallest momentum.
- A different Off-crest phases is used.

2 Cavities optimization

Sami Habet

(IJCLAB & JLab)

January 2023

< □ > < □ > < □ > < □ > < □ >

Accelerating section : Comparison

Accelerating section : Comparison

Sami Habet

(IJCLAB & JLab)

January 2023

- We use at least to shape the twiss parameters from the exit of the accelerating section.
- A chicane will be used in order to separate e^- from e^+ , and to create a dispersion.
- A circular collimator of $R = 1 \ cm$ is used to select positrons around p $= 60 \ MeV/c$.

Jefferson Lab

Optics

Beam size

Normalized emittance

Sami Habet

(IJCLAB & JLab)

January 2023 1

Transmission and current

Sami Habet

(IJCLAB & JLab)

January 2023

< □ > < □ > < □ > < □ > < □ >

e^+ within one bunch

- Identification of the first bunch
- tracking of e^+ within one period
- At the exit of the QWT + AS (1MV/m):

Transmission and current

Sami Habet

(IJCLAB & JLab)

January 2023

Normalized emittance

Params	Target Exit one period	1 st chicane exit	C100 exit
$\sigma_{dp/p}$ [%]	1.3870	1.0569	0.6
$\sigma_{z}[m]$	0.0002	0.0026	0.003
$\sigma_{x}[m]$	0.0028	0.0081	
σ_{xp} [rad]	0.0021	0.0007	
$N \epsilon_x[mm]$	0.66	0.592	25
N ϵ_y [mm]	0.63	0.47	25
p Central [MeV/c]	55	60	123
e ⁺	2482 nA	98 nA	

Sami Habet

(IJCLAB & JLab)

January 2023

<ロト < 四ト < 三ト < 三ト

2 Cavities optimization

Sami Habet

(IJCLAB & JLab)

January 2023

< □ > < □ > < □ > < □ > < □ >

- The solnoid B_2 set the energy spread collection.
- An off-crest acceleration has been done to reduce the dp/p.
- The electric gradient 1 MV/m allow to reduce the energy spread by 10 %.
- The accelerating section has no effect on σ_z , σ_x , σ_{xp} and $\epsilon_{x,y}$.
- After a momentum collimation, we reach $I_{e^+} \simeq 100 nA$.
- The collected positrons at the exit of the chicane match with the C100's acceptances.
- We can't make any statement before using the first chicane to select the wanted central momentum, but we already know the accepted particle distribution that we have to transport to the CEBAF.

