An 11-GeV Raster for Hall B

(designed for eHD)

Rastering during the 2012 eHD tests

- H- and D-polarization losses measured using NMR
- Calculations indicate target cell design and rastering were inadequate
 - Significant heating (Møller scattering)
- Solution for lower power eHD tests and 11 GeV eHD measurements:
 - New target design
 - New raster system

Local Heating of target material

Spiral Track Raster Patterns

Operational math: for spiral track, arc element $ds^2 = dr^2 + r^2 d\theta^2$ Condition for uniform irradiation: constant speed $\upsilon = ds/dt$

Frequency-modulation

Amplitude-modulation

Constant radial pitch: $dr/d\theta$

Constant angular speed: $d\theta/dt$

FM-mode rastering

g14 Target with Hall B Slow Raster (Ø10 mm pattern)

g14 Target with Hall B Slow Raster (Ø15 mm pattern)

Improved target cell design

• Shorter, thicker aluminum wires for improved thermal conduction

Improved target with Hall B Slow Raster (Ø25 mm pattern)

Improved target with Hall B Slow Raster x100 raster speed

Technical issues with FM-mode rasters

Problems with high-speed FM-mode rasters:

- High peak frequencies

 100 Hz raster speed → 50 kHz sustained AC
 → 2 MHz peak AC
- Magnet drivers / power amplifiers
- High-freq AC generates EMFs in conductors (eddy-currents: heating & power losses)

Hall B Slow Raster magnet uses heavy gauge windings

> (unsuitable for high-frequency AC)

Alternative magnet coil wire: *Litz cable* (multiple wire strands, individually insulated) (operate to ~100 kHz AC)

Unfortunately, 100 kHz << 2 MHz and higher! (Litz cable not an option for high-speed FM-mode raster)

Amplitude-modulation (AM) rastering

Constant angular frequency $\omega(t)$

Improved target with AM-mode raster (Ø25 mm pattern)

Possible raster positions

Performance of existing 6-GeV fast rasters (Hall A/C)

max bend: impedance: inductive reactance: power supply: 0.353 mrad \cdot GeV $L_{DC} = 88 \mu H$ @ 25 kHz, X_L = 13.8 Ω 500 V adjustable 250 W DC-to-DC converter 50 A max (40 A nominal during operation)

Pattern for 1 GeV @ 20 $m \rightarrow$ 14.1 mm diameter

6-GeV raster magnet driver

Components commercially-available

Dual raster configuration for ~1 GeV

Each fast raster: <u>0.353 mrad bending</u> **1 GeV @ 20 m → 14.1 mm diameter**

For 1 GeV eHD test: need total 25 mm diameter

Required steps for implementing 6-GeV raster system

- accumulate existing components: power-amplifier resonance circuit waveform generators magnet coils
- bench test system 6-GeV raster magnets with resonance-mode power amplifier
- field measurements (24 KHz) along raster
- fix layout for components in the Hall (magnets, electronics with Pb enclosure, ceramic beam pipe, etc)
- remote control of raster system in Counting House
- raster magnet alignment
- commissioning raster with beam

11-GeV raster development

- Current Hall A fast raster insufficient to provide needed bend at 11 GeV (pattern for 11 GeV @ 20 m: 2.6 mm diameter for double raster)
- Build new fast rasters based on design from Hall A raster
- Fast switches and function generators usable
- Larger magnets \rightarrow bigger impedance \rightarrow better power supplies needed

11-GeV raster design (only one of two raster pairs are shown)

11-GeV raster: Calculated fields

Required steps for implementing 11-GeV raster system

<u>6-GeV raster system components that can be reused:</u>

- Power amplifiers
- Waveform generators
- Resonant-mode circuits

(require modifications to work with higher Q-value of new coils)

New equipment needed for 11-GeV:

- Magnet coils
- Ferrite yoke
- Ceramic beampipe
- Remote controls

Beamline Components : Alignment Procedure

- (1) Insert empty target cell in IBC
- (2) Run rastered beam with orbit locks OFF and small diameter raster pattern
 - increase pattern size until edge of target hit
 - re-center beam position
 - continue increasing pattern size and re-centering beam until max pattern diameter established
- (3) Record values of BPMs as nominal beam position
- (4) Turn orbit locks ON and test beam stability

Beamline Components : Running Procedure

- (1) Insert polarized target in IBC; position FC in beam
- (2) Run rastered beam and align using nominal BPM values as reference
- (3) Turn orbit locks ON and verify beam position
- (4) Block beam, retract FC, unblock beam