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Mott Location

Located in the injector.

Measures ⊥ polarization close to
the source.

Along with spin rotators, sets
spin direction for experiments.
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Mott Scattering Basics

The eN cross section can be written

σ(θ) = I (θ) [1 + S(θ)P · n]

with n = k×k′
|k×k′| . If n = x beam comes in, we see an asymmetry in the up

and down detectors

AUD =
σU − σD

σU + σD
= S(θ)P.

S(θ) is the analyzing power, known in this case as the Sherman function.
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Energy Optimization

Very large Sherman function in
this range

Operates in the 1 µA current
range

Uses “thick” (> 100 nm)
targets for both higher rate and
ease of manufacturing.
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Mott Layout

Targets are 0.01-5 µm of Au,
Ag, Cu, C.

θsc = 172.6°

Acceptance of 2.1 msr

AUD =
1− r

1 + r
with

r =

√√√√N↑UN
↓
D

N↓UN
↑
D
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Detectors

∼ 3% Energy resolution

Coincidence trigger on E+δE
detectors (removes neutrals)
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New DAQ

FADC channels for E and ∆E detectors records event pulse height

No dead-time issues with < 5 kHz means higher currents possible.

Handles delayed helicity reporting.

Collects time-of-flight of detected electrons.
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Goals of Precision Test

1 Last test results were published in 2000 (Steigerwald SPIN 2000
Proceedings). Need an update and check for agreement.

2 Build GEANT4 model that accurately represents the apparatus.

3 Incorporate Mott Scattering physics into GEANT4 to determine the
“Ideal” spectrum for good target events.

4 Update hardware and software to run at higher rates in 12 GeV era.
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Effective Sherman Function

Empirical fit with

A(d) =
PS(θ)

1 + αd
introduces

systematic uncertainties from
theoretical Sherman function,
target thickness, etc. These
uncertainties dominate
measurement.

So far good agreement at a few
% from past results. Can we
make this better?
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Detector Spectra

Clear “tails” in the spectrum.

Goals of simulation is two fold:
1 Elastic specrtum shape

accurately
2 Provide insight into A(d)
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Asymmetry Vs. Energy
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Measured asymmetry calculated
between dotted lines.

“Tail” carries almost full
strength of the physics signal
but with lower cross-section.

Possible that these are good
events loosing energy after
target and not being counted.
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Current Setup

Currently fires beam from the
front or back of the target to
the detectors.

Contains Reaalistic handling of
optical photons generated by
scintillation and cerenkov
processes.
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GEANT4 Simulated Spectra

A mono-energetic 5 MeV beam
shot at the detector package.

Blue: Vacuum, no ∆E

Red: Including ∆E detector

Martin McHugh (GWU) PSTP 13 PSTP 13 14 / 30



GEANT4 Simulated Spectra

Blue: Vacuum, no ∆E

Red: Added Air
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GEANT4 Simulated Spectra

Blue: Vacuum, no ∆E

Red: Added external Al
collimator and Pb cap.
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GEANT4 Simulated Spectra

Blue: Vacuum, no ∆E

Red: Added external Al window
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GEANT4 Simulated Spectra

Blue: Vacuum, no ∆E

Red: Raster over acceptance
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GEANT4 Simulated Spectra

Blue: Vacuum, no ∆E

Red: Passes through 5 µm Au
foil.
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Current Beam Dump

1.0” thick 8” diameter Al plate
in small lead hut

Heating issues limit beam
current

Large amount of backscatter
from dump makes it into the
detectors
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Backscatter Problem

Total rate from dump
comparable to or greater than
rate from target in thinner foils.

Using new DAQ, can select for
only in-time events.
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Beam Dump Upgrade Goals

1 Reduce amount of Backscatter

2 Increase amount of current it can handle

Proposed design of 0.25” Be backed with 0.75” Cu should address both of
these issues.
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Backscatter Solution: Beryllium

Data from Tabata
G4beamline simulation counting
backscattered, pz < 0, electrons vs.
energy.
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GEANT4 Plan

1 Write Single Nucleon Mott Scattering event generator using input
from theorists.

2 Test for Asymmetries using this distribution.

3 Include the cross section from (1) into the physics processes and
geometrically bias events in order to determine asymmetry as a
function of target thickness.

4 Use the error estimates provided from simulation to better constrain
the accuracy of our theoretical Sherman function.
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Precision Upgrades

1 New targets and target ladders.

2 New beam dump.

3 Ready for beam time by late Fall 2014.
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Electron-Nucleus Scattering

Electron moves in the nuclear Coulomb field, E = Ze
r3 r. Magnetic field

induced in electron’s frame, B = − 1
c v × E. Therefore

B =
Ze

cr3
r × v =

Ze

mcr3
L

Magnetic field couples to the electron’s spin Vso = −µs · B. Scattering
potential :

V (r ,L,S) = VC (r) + Vso(r ,L,S) =
Ze

r
+

Ze2

2m2c2r3
L · S.
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Detailed Sherman Function

The single scattering cross-section for a point like nucleus is

σ(θ) = I (θ) [1 + S(θ)P · n]

with n = k×k′
|k×k′| . The spin-averaged cross section is

I (θ) =

(
mc

p

)2
[(

Ze2

mcβ

)2 (
1− β2

) |f (θ)|2

sin2(θ/2)
+
|g(θ)|2

cos2(θ/2)

]

and S(θ) is the Sherman Function,

S(θ) =
2

I (θ)

(
mc

p

)2( Ze2

mcβ

) √
1− β2

sin(θ/2)
[f (θ)g∗(θ) + f ∗(θ)g(θ)]
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Measuring Asymmetries

How we actually measure the polarization:

Measure hits in each detector for one helicity state. Get N↑L and N↑R .

Flip helicity, repeat. Get N↓L and N↓R .

Calculate the cross-ratio, r =

√
N↑

L N↓
R

N↓
L N↑

R

.

Calculate asymmetry ALR =
1− r

1 + r
.

Do the same for the vertical AUD .

The polarization is

P =
1

Seff (θ)
[ALR ŷ − AUD x̂]
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Sherman Function Corrections

S(θ) must account for

Finite Nucleus. Adjust
theoretical prediction.

Multiple scattering. Shown as
dependence on target thickness,
d

S(θ)→ Seff (θ, d) =
S(θ)

1 + α(θ)d
.

Run on thinnest possible target.
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Mott Layout
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