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Mott Location

@ Located in the injector.
@ Measures | polarization close to
the source.

@ Along with spin rotators, sets
spin direction for experiments.

Martin McHugh (GWU) PSTP 13 PSTP 13 3 /30



Mott Scattering Basics

The el cross section can be written

a(0) = 1(0)[L + S(O)P - n]

kxk’ _ : :
with n = Tk If n = x beam comes in, we see an asymmetry in the up

and down detectors

Aup = TUD = S(0)P.

5(0) is the analyzing power, known in this case as the Sherman function.
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Energy Optimization
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ease of manufacturing.
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Mott Layout
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Detectors

photo - tube

light - guide
scintillator

aluminum -
collimator
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photo - tube

/
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e ~ 3% Energy resolution

e Coincidence trigger on E+JE
detectors (removes neutrals)
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New DAQ

@ FADC channels for E and AE detectors records event pulse height
@ No dead-time issues with < 5 kHz means higher currents possible.
o Handles delayed helicity reporting.
°

Collects time-of-flight of detected electrons.
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Goals of Precision Test

© Last test results were published in 2000 (Steigerwald SPIN 2000
Proceedings). Need an update and check for agreement.

@ Build GEANT4 model that accurately represents the apparatus.

© Incorporate Mott Scattering physics into GEANT4 to determine the
“Ideal” spectrum for good target events.

@ Update hardware and software to run at higher rates in 12 GeV era.
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Effective Sherman Function

@ Empirical fit with

5 PS5(0) .
; A(d) = Ll introduces
@ 30;&&%&\ Kinetic Energy: 1 + O[d . .
= s o 2rmev systematic uncertainties from
NG ~ ~ o 82MeV . .
8 ol o e L e theoretical Sherman function,
€ £ ~ T R i
3" — e target thickness, etc. These
3 10F T uncertainties dominate
°F measurement.
GO_ 1 2 ' 3 ' 4 é 6

@ So far good agreement at a few
% from past results. Can we
make this better?

Au Target Thickness (um)
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Detector Spectra
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@ Clear "tails” in the spectrum.

@ Goals of simulation is two fold:

@ Elastic specrtum shape

accurately
@ Provide insight into A(d)
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Asymmetry Vs. Energy

* l @ Measured asymmetry calculated
N } between dotted lines.
£ B e “Tail" carries almost full
§3° 11“" strength of the physics signal
g2 but with lower cross-section.

10 HH " 11 ”” @ Possible that these are good

events loosing energy after
target and not being counted.
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Current Setup

@ Currently fires beam from the
front or back of the target to
the detectors.

@ Contains Reaalistic handling of
optical photons generated by
scintillation and cerenkov
processes.
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GEANT4 Simulated Spectra

E Spectra

Entrigs

@ A mono-energetic 5 MeV beam
shot at the detector package.

@ Blue: Vacuum, no AE

@ Red: Including AE detector
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GEANT4 Simulated Spectra

E Spectra

@ Blue: Vacuum, no AE
@ Red: Added Air
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GEANT4 Simulated Spectra

E Spectra

Entrigs

@ Blue: Vacuum, no AE

@ Red: Added external Al
collimator and Pb cap.
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GEANT4 Simulated Spectra

E Spectra

Entrigs

@ Blue: Vacuum, no AE
@ Red: Added external Al window
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GEANT4 Simulated Spectra

E Spectra

@ Blue: Vacuum, no AE

@ Red: Raster over acceptance
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GEANT4 Simulated Spectra

E Spectra

@ Blue: Vacuum, no AE

@ Red: Passes through 5 um Au
foil.
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Current Beam Dump

@ 1.0" thick 8" diameter Al plate
in small lead hut

@ Heating issues limit beam
current

@ Large amount of backscatter
from dump makes it into the
detectors
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Backscatter Problem
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Beam Dump Upgrade Goals

@ Reduce amount of Backscatter

@ Increase amount of current it can handle

Proposed design of 0.25" Be backed with 0.75" Cu should address both of
these issues.
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Backscatter Solution: Beryllium
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G4beamline simulation counting
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GEANT4 Plan

@ Write Single Nucleon Mott Scattering event generator using input
from theorists.

@ Test for Asymmetries using this distribution.

@ Include the cross section from (1) into the physics processes and
geometrically bias events in order to determine asymmetry as a
function of target thickness.

@ Use the error estimates provided from simulation to better constrain
the accuracy of our theoretical Sherman function.
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Precision Upgrades

© New targets and target ladders.
© New beam dump.
© Ready for beam time by late Fall 2014.
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Electron-Nucleus Scattering

Electron moves in the nuclear Coulomb field, E = %;?r. Magnetic field

induced in electron’s frame, B = —%v x E. Therefore
Ze Ze
B = —3rxXv= 3 L
cr mcr

Magnetic field couples to the electron’s spin Vs, = —p, - B. Scattering
potential :

Ze Ze?
V(r,L,S) = VC(r)+ Vso(r,L,S) = T + ml.s
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Detailed Sherman Function

The single scattering cross-section for a point like nucleus is
a(@)=1(0)[L+ S(O)P - n]

k><k . . -
with n = Tk The spin-averaged cross section is

me\? [ [ Ze?\*? OO
1(6) = (7) (m_cﬁ) =5 Gy + con2(0/2)
and S(#) is the Sherman Function,

2 (mc 2 [ Ze? 1 N
50) = 105 () (255) Yarmy O+ F(0)0)
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Measuring Asymmetries

How we actually measure the polarization:

@ Measure hits in each detector for one helicity state. Get NZ and N,T?.

o Flip helicity, repeat. Get Ni and Nf.(..

. NN}
o Calculate the cross-ratio, r = —£.
NL NR
1—r
o Calculate asymmetry Aj g = .
1+4+r

@ Do the same for the vertical Ayp.

The polarization is
1

P——— _[ArY — Aupk
Seff(g)[ LRY UD]
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Sherman Function Corrections
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5(0) must account for

o Finite Nucleus. Adjust
theoretical prediction.

e Multiple scattering. Shown as
dependence on target thickness,
d

S(0) = Ser(0,d) = %.

Run on thinnest possible target.
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Mott Layout
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