

Development of a Polarized Positron Source for CEBAF

Sami Habet

IJCLab & JLab

March 4, 2023

This research work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under agreement STRONG - 2020 - No 824093

Sami Habet

European Union s Horizon 2020 research and innovation program agreement No 824093.

IJCLab & JLab 1 on 32 rget optimization Collection system Momentum collima 00 00 00 igitudinal optimizatio 00

on Un-Polarize

de Conclusion

Introduction

Sami Habet

J. Grames, E. Voutier et al., JLab Experiment E12-11-105 (2011)

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 0000000000
Plan					

- 2 Collection system
- Omentum collimation
- ④ Longitudinal optimization
- **G** Un-Polarized mode

Sami Habet

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 0000000000
Plan					

- 1 Target optimization
- 2 Collection system
- Omentum collimation
- Longitudinal optimization
- **6** Un-Polarized mode

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 0000000000
Plan					

- 1 Target optimization
- 2 Collection system
- **3** Momentum collimation
- Longitudinal optimization
- O Un-Polarized mode

European Union s Horizon 2020 research and innovation program agreement No 824093.

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 0000000000
Plan					

- 1 Target optimization
- 2 Collection system
- **3** Momentum collimation
- 4 Longitudinal optimization
- **6** Un-Polarized mode

European Union s Horizon 2020 research and innovation program agreement No 824093.

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 0000000000
Plan					

- 1 Target optimization
- 2 Collection system
- **3** Momentum collimation
- 4 Longitudinal optimization
- **5** Un-Polarized mode

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 0000000000
Plan					

- 1 Target optimization
- 2 Collection system
- **3** Momentum collimation
- 4 Longitudinal optimization
- **5** Un-Polarized mode

6 Conclusion

Sami Habet

Target optimization ●000	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 0000000000
Outline					

- 2 Collection system
- Omentum collimation
- 4 Longitudinal optimization
- **5** Un-Polarized mode
- 6 Conclusion Backup slides

Sami Habet

IJCLab & JLab

Unpolarized mode

• Efficiency :
$$\epsilon = \frac{N_{e^+}}{N_{e^-}}$$

Polarized mode

• Figure-of-Merit FoM=
$$\epsilon P_{e^+}^2$$

Sami Habet

IJCLab & JLab

Unpolarized mode

Efficiency :
$$\epsilon = \frac{N_{e^+}}{N_{e^-}}$$

Polarized mode

• Figure-of-Merit FoM=
$$\epsilon P_{e^+}^2$$

Sami Habet

1

IJCLab & JLab

Sami Habet

IJCLab & JLab 6 on 32

Sami Habet

IJCLab & JLab

2 Collection system

- Omentum collimation
- 4 Longitudinal optimization
- **5** Un-Polarized mode
- 6 Conclusion Backup slides

Sami Habet

IJCLab & JLab

Target optimization Collection system Momentum collimation Longitudinal optimization Un-Polarized mode Co 0000 Collection system Collimation Construction Collimation Construction Collection Collection Collection System Collection C

- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- L₁:Short solenoid length
- B_1 : Magnetig field in L_1
- R: Accelerator aperture

Sami Habet

Quarter Wave Transformer

Collection system

- Reduce the angular transverse spread
 x - Px and x - Py
 - $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{R}R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

• *L*₁:Short solenoid length

Longitudinal optimization

- *B*₁: Magnetig field in *L*₁
- R: Accelerator aperture

Sami Habet

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

Collection system Longitudinal optimization 000 Quarter Wave Transformer

- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{R_1}R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- L₁:Short solenoid length
- B₁: Magnetig field in L₁
- R: Accelerator aperture

Sami Habet

Collection system Longitudinal optimization 000 Quarter Wave Transformer

- - Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
 - Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
 - Use a QWT as an energy filter.
 - QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_1}R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- L₁:Short solenoid length
- B_1 : Magnetig field in L_1
- R: Accelerator aperture

Sami Habet

Quarter Wave Transformer

Collection system

- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

• L₁:Short solenoid length

Longitudinal optimization

- B₁: Magnetig field in L₁
- R: Accelerator aperture

Sami Habet

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

Goal

- Reduce the longitudinal energy spread of the accepted e⁺ at p = 60 MeV/c
- f = 1497 Mhz
- E = 1 MV/m
- L_{cell} = 0.2 cm
- $r_{cell} = 3 cm$

Sami Habet

IJCLab & JLab

Goal

- Reduce the longitudinal energy spread of the accepted e⁺ at p = 60 MeV/c
- $f = 1497 \ Mhz$
- E = 1 MV/m
- $L_{cell} = 0.2 \ cm$
- $r_{cell} = 3 cm$

Sami Habet

IJCLab & JLab

Target optimization collection system Momentum collimation Longitudinal optimization Un-Polarized mode Conclusion

Accelerating warm section

Goal

 Reduce the longitudinal energy spread of the accepted e⁺ at p = 60 MeV/c

- $f = 1497 \ Mhz$
- E = 1 MV/m
- L_{cell} = 0.2 cm
- $r_{cell} = 3 cm$

Sami Habet

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 0000000000
Outline					

- 1 Target optimization
- 2 Collection system
- **3** Momentum collimation
- 4 Longitudinal optimization
- **6** Un-Polarized mode
- 6 Conclusion Backup slides

IJCLab & JLab

11 on 32

Beam size optimization

Sami Habet

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

Beam size optimization

Sami Habet

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

IJCLab & JLab 12 on 32

Target optimization	Collection system	Momentum collimation	Longitudinal optimization •000	Un-Polarized mode	Conclusion 0000000000
Outline					

- 1 Target optimization
- Ollection system
- Omentum collimation
- 4 Longitudinal optimization
- **5** Un-Polarized mode
- 6 Conclusion Backup slides

IJCLab & JLab

13 on 32

Longitudinal optimization: Energy spread and bunch length

Longitudinal optimization

0000

• Compression factor = <u>Bunch length Entrance</u> <u>Bunch length Exit</u>

•
$$C = \frac{1}{1 + [R_{56} \times \kappa]}$$

•
$$\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$$

- Where:
 - R₅₆ : Longitudinal chicane element.
 - $k = 2\pi \frac{f}{c} [m^{-1}]$
 - f is the cavity frequency
 - eV₀ Cavity acceleration [MeV]
 - E₀ Central energy [MeV]
 - ϕ Cavity phase advance.

Un-Polarized mode

Longitudinal optimization: Energy spread and bunch length

- Compression factor = <u>Bunch length Entrance</u> <u>Bunch length Exit</u>
- $C = \frac{1}{1 + [R_{56} \times \kappa]}$

•
$$\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$$

- Where:
 - R₅₆ : Longitudinal chicane element.
 - $k = 2\pi \frac{f}{c} [m^{-1}]$
 - f is the cavity frequency
 - eV₀ Cavity acceleration [MeV]
 - E₀ Central energy [MeV]
 - ϕ Cavity phase advance.

Sami Habet

IJCLab & JLab

- Compression factor = $\frac{Bunch \ length \ Entrance}{Bunch \ length \ Exit}$
- $C = \frac{1}{1 + [R_{56} \times \kappa]}$

•
$$\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$$

- Where:
 - R₅₆ : Longitudinal chicane element.
 - $k = 2\pi \frac{f}{c} [m^{-1}]$
 - f is the cavity frequency
 - eV₀ Cavity acceleration [MeV]
 - E₀ Central energy [MeV]
 - φ Cavity phase advance.

IJCLab & JLab

Target optimization Collection system Momentum collimation Longitudinal optimization Un-Polarized mode Conclusion

Transmission and Curent

Sami Habet

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 0000000000
summarv					

Ce+BAF Parameter	e^+ model	Target value
σ _{dp/p} [%]	0.68	\pm 1%
$\sigma_{z}[ps]$	4	\leq 4
$\sigma_{x}[mm]$	6	\leq 3
N $\epsilon_n[mm mrad]$	140	\leq 40
Mean Momentum [MeV/c]	123	123
$e^+~(P>60\%)$	170 nA	50 nA

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode ●00000	Conclusion 0000000000
Outline					

- ① Target optimization
- Ollection system
- Omentum collimation
- 4 Longitudinal optimization
- **5** Un-Polarized mode
- 6 Conclusion Backup slides

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

Un-Polarized mode: Positron Capture

- Reduce the magnetic field in the first solenoid.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use the same QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

• L₁ = 0.24 cm:Short solenoid length

Un-Polarized mode

- $B_1 = 0.96 T$: Magnetig field over L_1
- $R = 3 \ cm$: Accelerator aperture

Longitudinal optimization

Sami Habet

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

Un-Polarized mode: Positron Capture

- Reduce the magnetic field in the first solenoid.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use the same QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- $L_1 = 0.24 \ cm$:Short solenoid length
- $B_1 = 0.96 T$: Magnetig field over L_1

Un-Polarized mode

00000

• $R = 3 \ cm$: Accelerator aperture

Longitudinal optimization

Sami Habet

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

Un-Polarized mode: Positron Capture

- Reduce the magnetic field in the first solenoid.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use the same QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

• $L_1 = 0.24 \ cm$:Short solenoid length

Un-Polarized mode

- $B_1 = 0.96 T$: Magnetig field over L_1
- $R = 3 \ cm$: Accelerator aperture

Longitudinal optimization

Sami Habet

IJCLab & JLab 18 on 32

Momentum collimation

Sami Habet

IJCLab & JLab

Longitudinal optimization

- The longitudinal energy spread dp/p is reduced by accelerating from 22 MeV/c to 123 MeV/c.
- The accelerating section is utilized to produce the required energy chirp.
- The same compression chicane is employed to effectively reduce bunch length.

Un-Polarized mode

IJCLab & JLab

Unpolarized mode: Transmission current

Sami Habet

IJCLab & JLab

Un-Polarized mode

European Union s Horizon 2020 research and innovation program agreement No 824093.

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode 00000●	Conclusion 0000000000
summary					

Ce+BAF Parameter	e ⁺ model	Target value
[%]	0.5	+ 1%
$\sigma_{z}[ps]$	2	< 4
$\sigma_{\rm x}[mm]$	2	$\stackrel{-}{\leq}$ 3
N $\epsilon_n[mm mrad]$	140	\leq 40
Mean Momentum [MeV/c]	123	123
$e^+~(P>20\%)$	700 nA	$1 \ \mu A$

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion •000000000
Outline					

- ① Target optimization
- Ollection system
- Omentum collimation
- 4 Longitudinal optimization
- **5** Un-Polarized mode
- 6 Conclusion Backup slides

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion 000000000
Conclusion					

- The performance of the positron system is heavily dependent on the central momentum. To obtain a high yield of positrons, the central momentum should be set to 15 MeV/c, while a high polarization requires a central momentum of 60 MeV/c.
- The QWT plays a crucial role in selecting the desired momentum and reducing the spread of transverse angles. accelerating section significantly impacts the longitudinal plane, reducing the energy spread to meet the CEBAF requirement of $\sigma_{dp/p} = \pm 1\%$.
- It is possible to achieve a compromise between the energy spread and the bunch length to meet the appropriate longitudinal CEBAF requirement during the injection.
- To achieve a higher current of around 1 μA for the unpolarized mode with a momentum of 15 20 MeV/c, it is necessary to adjust the variable parameters of the layout.

This research work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under agreement **STRONG - 2020 - No 824093**.

Sami Habet

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

Twiss functions

Sami Habet

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode	Conclusion
Beam size					

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

Normalized emittance

Sami Habet

IJCLab & JLab

European Union s Horizon 2020 research and innovation program agreement No 824093.

Transmission and current

Sami Habet

IJCLab & JLab

Momentum collimation

 $B_1 = 2.5 T B_2 = 0.05T$

Sami Habet

IJCLab & JLab

Angular distribution

Sami Habet

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Un-Polarized mode 000000	Conclusion
_					

Transverse space

• The transmitted positrons are within the acceptance of the QWT

•
$$p_t^{QWT} = \frac{eB_1R}{2}$$
. = 10.31°

•
$$r_0^{QWT} = \frac{B_2}{B_1}R = 0.6 mm$$

Sami Habet

IJCLab & JLab