Beam Dispersion Problem Solved (?)

Increased maxStep \rightarrow Decreased number of transportation steps:
G4double maxStep $=0.5^{*}$ HalfWorldLength;
stepLimit = new G4UserLimits(maxStep);
logicWorld->SetUserLimits(stepLimit);
This lead to smaller beam dispersion (larger \% on-target)

$$
\begin{aligned}
& 3 \mathrm{MeV}: 34 \% \rightarrow 47 \% \\
& 5 \mathrm{MeV}: 65 \% \rightarrow 77 \% \\
& 8 \mathrm{MeV}: 88 \% \rightarrow 93 \%
\end{aligned}
$$

Not sure if this is physical.

Included Cerenkov Radiation

- Does not conserve energy (electron energy unchanged by emitting photons)
- \# of photons emitted per step currently arbitrary (I need to figure out the physics)
- Spectrum is accurate according to standard formula.
- Currently just absorbed at boundaries (No reflection/refraction)

Included Scintillation Process

- Also nonconservative.
- Absorbed at boundaries.
- Massively expensive.
- Physics is accurate according to manufacturer specs.

Decision

Do I:

- Absorb all photons hitting the surface with a fudge factor in the analysis representing the actual optics at the surfaces (fastest, unphysical, almost done currently).
- Model reflection/refraction and only count photons going to the proper face (slow-ish \& more realistic).
- Build a realistic PMT (and lightguide for dE) and count photo-electrons (possible, but unfamiliar territory for me).

