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THE PHYSICS OF FLUIDS

VOLUME 1, NUMBER 1

On the Theory of the Bubble Chamber

FRrepERICK SEITZ
University of Illinois, Urbana, Illinois
(Received October 3, 1957)

An attempt is made to analyze the factors which determine the operation of the bubble chamber.
It is concluded that the majority of bubbles in conventional chambers are nucleated by moderately
energetic free electrons produced by the incident particles in Coulomb encounters, Nuclei are dis-
placed too infrequently by Coulomb encounters to account for the observed densities of bubbles.
The electrons deposit their kinetic energy in highly localized regions which then are the source of
explosions which produce bubbles of greater than critical size in a time of the order of 101 or 101
sec. The bubbles grow subsequently by evaporation of the fluid. The temperature of the fluid should
be sufficiently close to the eritical temperature that the energy required to produce the bubble of
critical size can be provided by an electron with a range comparable to or less than the diameter of
the bubble of critical size. Otherwise the electron will be unable to localize its energy in a sufficiently
small volume in any but highly improbable cases. It is also concluded that the viscosity of the liquid
plays a very important role in determining the threshold energy for forming a bubble of critical size
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when it has a value near 1 centipoise or larger.

1. INTRODUCTION

LASER’s bubble chamber, which offers the
possibility of accomplishing for the physics of
high-energy particles what the Wilson cloud chamber
did for classical nuclear physics, is based on the
observation that ionizing radiations can nucleate
bubbles in a superheated liquid. The bubbles form
along the trajectory of the incident particle and,
under favorable circumstances, define the path in a
relatively unambiguous manner. Most liquids appear
to function as suitable media for bubble chambers
under the right conditions. Thus the effect appears
to be a general one. Organic liquids, such as propane,
have been employed; simpler liquids such as liquid
hydrogen and liquid rare gases can be as effective in
appropriate temperature ranges.

Glaser' suggested originally that the formation of
bubbles might be associated with the development
of electrostatic forces produced by the charges
induced by ionization, but eventually (private
communication) abandoned this view in favor of a
picture which is closely related to that which will be
developed in this paper. He and his colleagues have
also observed that the effect is related to the pro-
duction of free electrons (& rays) since the number of
bubbles per unit length of path is correlated with
the corresponding number of 8 rays in propane. In
the following work we shall attempt to substantiate
the opinion that the bubbles are related to the
production of free electrons, however the analysis
will indicate that the mechanism probably depends

1D, A. Glaser, Nuovo cimento 11, 361 (1954). Glaser has
repared a general review of the field of bubble chambers
or a forthcoming volume of the Handbuch der Physik; D. A.
Glaser and D. C. Rahm, Phys. Rev. 97, 474 (1955); Glaser,
Rahm, and Dodd, bid. 102, 1654 (1956).

upon the production of highly localized hot regions,
or ‘“‘temperature spikes,” within the liquid which
literally explode into bubbles of larger than eritical
size which can grow through evaporation of the
superheated liquid. The point of view adopted in
this presentation is closely related to that used in
discussing the effects produced by ionizing radiations
in solid materials and gathered together under the
designation ‘radiation damage.” The principal
difference between the behavior of solids and liquids
would appear to be a consequence of the great
difference in viscosity of the two media. This pres-
entation must be regarded as speculative, not
merely because the theory is an approximate one
but because the opportunities for comparison
between theory and experiment are meager at the
present time. Most of the investigators who construct
bubble chambers are, quite naturally, much more
interested in using them for high energy research
than as devices for the study of bubble production.
Fortunately, Glaser, Rahm, and Dodd" have pub-
lished some information on the quantitative aspects
of the operation of propane chambers which we
shall find to be of crucial interest if we assume it is
typical of bubble chambers in general. Similar
results for hydrogen have been presented by Nagle,
Hildebrand, and Plano.?

2. THRESHOLD ENERGY FOR A STATIC BUBBLE

There are two critical steps involved in the forma-
tion of a bubble of visible size. The first is related
to the formation of the smallest bubble, or nucleus,
which can grow spontaneously as a result of evap-

2 Nagle, Hildebrand, and Plano, Rev. Sci. Instr, 27,
203 (1956).
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oration of the fluid; the second is related to the
growth of this nucleus to a macroscopic bubble.
Most of the present article will be devoted to the
first step since it involves the influence of the ionizing
radiation in a critical way. The second step has been
subject to a careful analysis by Plesset and Zwick,®
who have resolved the factors which determine the
ultimate rate of growth under fairly general assump-
tions. We shall employ their results in Sec. 11.
Pless and Plano* have discussed the contributions
to the energy of formation of a static bubble when
it is generated in a reversible manner. We shall
repeat the main points of their discussion since it
forms part of the basis for the presentation given
here. :
A spherical bubble possesses an effective pressure
which tends to cause it to collapse as a consequence
of the surface tension. The effective pressure is

p. = 20/r L

in which 7 is the radius of the bubble and ¢ is the
surface tension. In a statically stable bubble, this
pressure is balanced by the difference between the
pressure of the fluid and that of the gas in the bubble,
that is

Pe = Di — Py 2

in which p, is the pressure of the gas and p, that of
the fluid. In a typical bubble chamber p, is reduced
from the equilibrium value, of the order of tens of
kg per em®, to a value near one atmosphere (1 kg
per em®) to sensitize the system. Assuming it is
filled with gas at the equilibrium pressure p,, a
stable bubble satisfies the condition

20/R, = p, — p; =2 p. 3)

immediately after reduction of the pressure in the
fluid. Here R, is the critical or equilibrium radius.
Thus the equilibrium radius is

R, = 2¢/p.. (4)

A bubble having a larger radius and containing the
vapor at equilibrium pressure will grow as the
liquid evaporated into it, provided p, remains small
compared to p,.

The primary problem of the mechanism of the
bubble chamber is that of determining the physical
circumstances which lead to the formation of bubbles
of radius equal to or larger than (4) and containing
the equilibrium pressure of vapor. The minimum

3 M. S. Plesset and S. A. Zwick, J. Appl. Phys. 23, 95
(1952); 25, 493 (1954).
*1. A. Pless and R. J. Plano, Rev. Sci. Instr. 27, 935 (1956).

energy required for the process is the sum of  the
surface energy and the heat of vaporization of the
vapor in the bubble, if we assume the initial bubble
is formed so quickly that the energy of vaporization
cannot be furnished from the ambient energy. Thus

B, = 4roR.? + %’—“anvH, 5)

in which n, is the number of moles per unit volume
in the vapor at pressure p,, and H, is the heat of
sublimation per mole. This may be written in the

form
3

2n,
B, = mp% (1 +§’%H,> (6)
with the use of (4). The quantity in parenthesis may
be expressed as

(1 + 2H,/3Z.R,T) @

in which Z, is the compressibility factor p,V/R,T,
with V the molar volume, and R, is the gas constant.
It may be noted that (6) is relatively sensitive both
to p, and to ¢, decreasing with increasing values of
the first and decreasing values of the second. In
general p, increases with increasing temperature
whereas the surface tension decreases as one ap-
proaches the critical temperature and pressure.
Thus E,, decreases as the temperature of operation
of the chamber rises.

If the pressure p, of the fluid is not entirely
negligible, a third term representing the work done
in expanding the bubble against this pressure must
be added to the foregoing. We shall not carry this
term along with the other two in the following since
it will not play a decisive role in the discussion when
p, is small compared with p,.

Table I contains® values of the quantities appear-
ing in the preceding equations for liquid hydrogen
and propane in typical cases of interest. It may be
seen from the table that the surface energy of the
bubble, namely 16x¢°/p.*, is about 1.12 ev for
hydrogen and 27.1 ev for propane. The energy of
evaporation of the gas contained in the bubbles is

5 Most of the empirical data appearing in the tables were
obtained from standard tables, such as The American Institute
of Physics Handbook (McGraw-Hill Book Company, Inc.,
New York, 1957); Lange’s Handbook of Chemistry (Hand-
book Publishers, Inc., Sandusky, Ohio); J. D’Ans and E. Lax,
Taschenbuch fir Chemiker und Physiker (Springer-Verlag,
Goéttingen, 1949); Landoldt-Bornstein, Physikalischen Zahlen-
werte und Funktionen (Springer-Verlag, Berlin). The value
of the surface tension of hydrogen was obtained from the
Cryogenic Data Book by D. B. Chelton and Douglas R. Mann
of The National Bureau of Standards. The value for propane
was obtained from the paper by D. L. Katz and W. Saltman,
Ind. Eng. Chem. 31, 91 (1939).
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TasLE I. Values of the quantities® appearing in Eqgs. (4),
(6), and (7) for liquid hydrogen and propane. (Z, is assumed
to be unity.)

Hg CSHS
p. — ps (atmos) 5 10
T(°K) 27 328
a{dynes/cm?) 0.97 4.46
R (cm) 3.83 X 1077 8.81 X 1077
V. = 4rR.3/3(cm3) 2.35 X 107 2.86 X 10~
H (kg cal/mole) 0.215 3.9
16m03/p 2(ev) 1.12 27.1
(1 + 2H,/3RT) 3.65 4.81
En(ev) 4.08 131.

larger than this by a factor 2.65 and 3.81 in the
two cases.

Quantities related to the equation of state of
hydrogen and propane are given in Table II.

TasLE II. Quantities® related to the equation of state hydrogen
and propane.

H, CsHs
Boiling temperature T»(°K) 20.3  231(—42.2°C)
Density at boiling point pp (g/cc) 0.0709 0.585
Critical temperature 7 (°K) 33.3 370(96.8°C)
Critical pressure p; (atmos.) 12.8 42.0
Critical density p. 0.031 0.22

We conclude from the values of K, that the
minimum energy required to form a bubble in
hydrogen is of the order 4 ev, whereas that in propane
and similar organie liquids is of the order of 131 ev.
We must investigate the mechanism of formation
more carefully before we may conclude that point
thermal spikes having these energies actually could
generate bubbles.

3. THE CROSS SECTION FOR ENERGY TRANSFER

Glaser, Rahm, and Dodd' have counted the
number of bubbles along the tracks of positive pions
and protons having a momentum of 915 Mev/c
in a propane chamber operated at 55.5°C. The
numbers were about 16 and 27 per cm, respectively.
Similarly, Nagle, Hildebrand, and Plano® have
found that the density of bubbles along the path of
bubbles along the path of a fast electron in a hydro-
gen chamber operated at 27°K is about 15 per cm.
We shall assume that each bubble is associated with
the transfer of a threshold energy E, to either an
electron or a hydrogen nucleus by the incident
particle as a result of Rutherford scattering. Table
III contains the empirical cross sections per molecule
calculated from the bubble densities in the two
cases. In the table, n is the density of bubbles along

the track (only one of the cases for propane is
included in the table), M is the molecular weight,
p is the density of the liquids estimated at the oper-
ating temperatures of the counters, ¢, is the empirical
cross section per molecule. E, is the threshold
energy associated with the cross section, described
below.

Glaser informs the writer (private communication)
that closely spaced bubbles may have fused in
typical tracks, so that the bubble densities given for
propane may be lower limits to the actual values.
This would imply, in turn, that the values of o,
and E, given in Table III for propane represent
lower and upper limits to more accurate values.
Actually, the measured distribution of bubbles
corresponded closely to a Poisson distribution func-
tion for mean densities close to those given previously
except for small spacings. Thus, it is doubtful if the
corrections are highly significant in a quantitative
sense.

TaeLE II1. Empirical cross section per molecule for forma-
tion of a bubble, obtained using bubble densities observed by
Nagle, Hildebrand, and Plano in H; and by Glaser and Rahm
in propane.

H, C;Hs
n{cm™1) 15 16
M(g) 2.0 441
o(g/cm3) 0.050 0.330
a {(cm?) 0.996 X 10~ 3.55 X 107
E (kev) 0.513 1.890

An expression for the cross section for transfer
of an energy greater than E, to an electron by
Rutherford scattering adequate for our purposes is

g, = 81ra;.2R;.2/’m,v2E, . (8)

Here a, is the Bohr radius, R, the Rydberg energy,
m, the electronic mass, and » the velocity of the
incident particle. Relativistic effects are neglected
since we are concerned with the magnitude of o,.
The cross section per molecule is found to be

do.m = 18.74 X 107"'Z,R,/E 8 (cm®) 9

in which Z, is the number of electrons per molecule,
namely, 2 for hydrogen and 26 for propane and
B8 = v/c. The latter is 0.676 for the protons and 0.988
for the pions in the case of the propane chamber.

E, = 4832 X 107""°R,/0,.. (ecm?) 8°.  (10)

Thus we find that the empirical threshold energies
are 513 ev and 1890 ev for the two cases listed in
Table II1. It may be added that the threshold value
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found for the protons in propane is the same as that
for the pions within the error of measurement.

We note that the values of £, derived in this way,
assuming that the agents responsible for the bubbles
consist of knocked-on electrons, are substantially
larger, by a factor of about 100 for hydrogen and
about 10 for propane, than the values of E,, given
in Table 1. Evidently dynamical factors must be
included if we are to conclude that delta rays
actually are the source.

The calculated value of E, which would be required
if the agents responsible for the bubbles were protons
ejected from the molecules by the incident particles
rather than electrons is at least three orders of
magnitude smaller than that found above. Hence
it is unreasonably small. The cross section ¢, for
ejection of a proton also varies as 1/E, in the Ruther-
ford range. For given FE,, the ratio of o, to o, is

a,/o0, = n,m./ZM, (11)

in which n, is the number of hydrogen atoms per
molecule and M, is the mass of the proton. This ratio
is of the order of 107 for hydrogen and 10~ for
propane. Thus E, would have to be as small as
1 ev or less if the bubbles observed in hydrogen or
in propane were to originate in ejected protons. The
corresponding energy would be inadequate to
produce a stable bubble, in a typical case, even in a
reversible manner,

To summarize, we are lead to the conclusion that
the bubbles are related primarily to energy trans-
ferred from the incident particle to the electronic
system and not to the nuclei. Thus bubble formation
in the liquids used resembles in a broad way the
radiation damage® found in organic solids and the
alkali halides and stands in contrast to the damage
found in metals and semiconductors, which is
produced primarily by the displacement of atoms
through close Rutherford encounters.

Glaser, Rahm, and Dodd reached a similar con-
clusion as a result of the observation that the density
of bubbles correlate with the density of delta rays
along the tracks. Actually, the density of displaced
protons, and indeed of atoms in general, would also
correlate with the density of delta rays so their
argument is not sufficiently restrictive. When
combined with the foregoing analysis, however, it
seems safe to conclude that delta rays having a
threshold near 1 kev are responsible for the bubbles
in hydrogen and propane.

¢ See, for example, the survey by F. Seitz and J. S. Koehler
in Solid State Physics (Academic Press, Inc.,, New York,
1956), Vol. 2.

4. FATE OF ENERGY TRANSFERRED TO
ELECTRONIC SYSTEMS

The energy transferred to the electronic system of
a substance can reappear in several forms. The
simplest form is associated with atomic or nuclear
vibrations, that is with heat in the normal sense;
however some may be emitted in the form of
fluorescent radiation, or may be stored in the form
of metastable dissociation products. Even the most
efficient cathodoluminescent crystals do not have
an energy efficiency’ larger than fifteen or twenty
percent for conversion of incident energy into light,
most of the remaining energy reappearing as heat.
Similarly, careful studies® of the coloration of alkali
halides indicate that only a small part of the energy
of incident x-rays, which produce electrons by
photoionization, is stored. It seems safe to conclude
that most of the energy transmitted to the electronic
systems of liquid hydrogen and propane reappears
in the form of heat distributed among the excited
molecule and its neighbors.

Glaser has pointed out to the writer that there is
evidence to show that this conclusion is not the
case in very pure rare gases, particularly xenon with
which he and his colleagues have carried out exten-
sive experiments.’ They have found that very pure
xenon is not radiation sensitive, but it becomes so
when very small amounts of ethylene are added.
Parallel experiments, carried out at Los Alamos and
at Argonne National Laboratory, on the ability
of xenon to serve as a fluorescent counter, showed
that the luminescent efficiency of the liquid is very
high until traces of hydrocarbons are added. Appar-
ently a large fraction of the energy transmitted to
the pure xenon is able to diffuse out of the region
excited initially, perhaps in the form of excitons,
without contributing to the thermal spike. A large
part of this energy would appear to be emitted, in
turn, as radiation. The hydrocarbons presumably
serve as catalysts for the conversion of the electronic
energy into energy of atomic motion.

5. BEHAVIOR OF ELECTRONS HAVING ENERGIES
NEAR OR BELOW 10 KEV

Electrons having energies equal to or less than
10 kev are completely in the classical region of
energy and possess a range which varies’® approxi-
mately as the square of the energy. Actually the

7 See, for example, W. J. Van Sciver and L. Bogart, Bull.
Am. Phys. Soe. Ser. II, 2, 142 (1957).

8 H. U. Harten, Z. Physik 126, 619 (1949); E. Feldtkeller,
thesis, Technical University, Stuttgart, 1957.

? Brown, Glaser, and Perl, Phys. Rev. 102, 586 (1956).
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straggling in energy and in direction are very marked,
increasing rapidly with decreasing energy, so that
the range has a pragmatic rather than precise mean-
ing. Since a 10-kev electron loses between 25 and
50 ev in an average collision, the straggling in range
along the actual trajectory is of the order of five
% and the straggling in direction, principally
as a result of elastic scattering, is of the order of
ten radians. Thus the motion is almost diffusive.
The practical range of 10-kev electrons which
undergo the least angular straggling is about 0.12
mg/cm® in aluminum. This may be generalized to
the form

R (cm) = 0.58E" (kev)/p(Z/ A) (12)

for other materials. Here p is the density and Z/A
is the ratio of the number of electrons to the molec-
ular weight in units in which the mass of the oxygen
atom is 16. Z/A is 1.0 for H, and 0.59 for propane.
In view of the diffusive motion, the average range
of the electrons is substantially smaller than the
practical value, which corresponds to a straight-line
trajectory. For example it is about half the practical
value for 10-kev electrons and relatively less for
those of lower energy.

Table IV contains the values of E for which the
practical range, given by (12), is equal to 2R, when
R, has the values given in Table I. It is interesting
to note that these values of E are of the same mag-
nitude as the values of E, in Table III, being about
half as large.

TasLE IV. Values of the electron energy for which the
practical range is twice the radius of the bubble of critical
size (Table I).

H, CsHs
R (cm) 3.83 X 1077 8.81 X 1077
E(kev) 0.257 0.769

We may conclude from the form of (12) that if
the energy required to form the bubbles of critical
size were substantially larger than the threshold
valués E,, given _in Table III, it would be difficult
for a typical electron to concentrate its energy
within the sphere of critical radius. Only a relatively
exceptional group of electrons which undergo
relatively large angular scattering and are, in con-
sequence, confined to a small volume would be
effective. That is, only those electrons which have
energies close to the threshold value and for which
the actual range is much smaller than the practical
range would produce bubbles.

Since R, is equal to 2¢/p, [Eq. (4)], the energy for
which the practical range is equal to 2R, satisfies the
equation

E.? = 1.75p X 10%Z/A)(4¢/p.), (13)
in which ¢/p, is to be expressed in cm. We see from
Eq. (6) that E, is much more sensitive to the
parameters o and p,, varying as o°/p,”. Since the
ratio E,/E, presumably should be appreciably less
than unity, it follows that the chamber should
operate under conditions relatively close to the
critical point, where ¢ is relatively low and p,
relatively large. This appears to be one of the con-
ditions placed upon the operation of a bubble
chamber if the bubbles are to be produced by the
electrons excited along the path of the incident
particle with a density characteristic of the experi-
ments summarized in Table III.

Knock-on protons which have energies in excess
of M,E,/m, may lose energy by exciting the elec-
tronic system. Here M, is the mass of the proton and
m, that of the electron, whereas E, is the first
electronic excitation energy. Since such protons
possess a velocity much smaller than electrons of
comparable energy, they dissipate energy at a much
greater rate per unit length of path. Thus typical
knock-on protons having energies above the thres-
hold energy for bubble formation could generate
bubbles in cases in which the threshold is high and
the range of a typical electron having the threshold
energy is too long. The density of bubbles formed in
this way would, of course, be much smaller than
that observed when the threshold energy is suffi-
ciently small that bubbles may be formed by elec-
trons having energies near the threshold value.
Presumably useful bubble chambers normally will
operate in such a way that the number of bubbles
formed by displaced atoms is negligible.

6. TIME FOR DISSIPATION OF HEAT

The analysis of the preceding sections show that
there is a substantial difference between the thres-
hold energy E, required to form bubbles of an
interesting size under the conditions in which bubble
chambers are usually operated (Table III) and the
minimum energy E, required to form bubbles of
critical size “‘statically’”’ (Table I). It seems reason-
able to suppose that the difference stems from the
fact that the actual bubbles must be formed rela-
tively quickly under conditions which are far from
those associated with equilibrium. One of the most
obvious limitations upon the time permitted for
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bubble formation is imposed by the finite thermal
conductivity of the medium. The thermal spike
produced by the electron will dissipate in a time
determined by the thermal conductivity. Unless the
void essential for the formation of a bubble is
produced before the thermal energy is dissipated,
the bubble either will not form, or will be produced
at a later time as a result of more diffusely distrib-
uted thermal effects which would not necessarily
locate it immediately on the trajectory of the
incident particle. For example vacancies formed over
a relatively large volume might coagulate into a
bubble.

We shall attempt to establish a criterion related
to the energy deposited by the excited electron
which will guarantee that a bubble be formed before
the thermal energy is dissipated. The problem is a
complex one and the criterion established here will
be somewhat approximate in nature.

For simplicity, we shall assume that the electron
transmits its energy to the liquid in such a way that
the volume within a sphere of radius R, is uniformly
heated, R, being somewhat smaller than R,. This is
equivalent to assuming that the trajectory of the
electron is coiled into a more or less spherical region
having a radius R,.

For definiteness in the ensuing discussion we shall
assume that the volume V, which is heated initially
is equal to that of a cylinder having the length 2R,
and a cross section wa®, where 4ra®/3 is the mean
molecular volume. One readily finds that the ratio
Vo/V,, in which V, = 4xR.2/3, is

Vo/V. = 3(1/n.V0)}/2. (14)

Here n,, is the number of molecules per unit of
volume of the liquid. Table V contains values of the
ratio for hydrogen and propane.

TasrE V. Adopted values of the ratio V,/V, for use in esti-

mates.
Hz C;Hs
N, Ve 3543 12 900
Vo/Ve 6.45 X 1073 2.73 X 1073
Ro/R. 0.186 0.140

The relaxation time =, for dissipation of heat in a
spherical thermal spike of radius r is
™ = 1r°/4D (15)

in which D is the diffusion coefficient for heat,
related to the coefficient of thermal conductivity A,

the density p, and the specific heat ¢ by the equation
D = X/ pc. (16

Values of these quantities appropriate for our present
interest are given in Table VI, along with the value
7. of 7, obtained when r = R.. Fortunately none of
the quantities appearing in D are highly sensitive

TasLE VI. The diffusion coefficient of heat and values of r,
{Eq. (15)] for the values of R, appearing in Table I.

H, CsHs
A(cal/cm-deg) 2.8 X 104 4 X 10~*
o(g/cc) 0.050 0.330
c(cal/g) 1.74 0.60
D(em?/sec) 3.22 X 10~3 2,02 X 1073
ro(sec) 1.139 X 10— 9.60 X 10~1
v. = R./r(cm/sec) 3.36 X 104 0.918 X 10¢

to pressure in the range of interest to us so that the
values are probably accurate to a factor of 2.
The quantity

v. = R,/r. = 4D/R, (17

is also given in the table. It is the average minimum
velocity with which the walls of the bubble must
move if the bubble is to achieve stability before
the heat responsible for its formation has dissipated.

It is interesting to compare v, with the adiabatic
acoustical velocity in the medium. The latter is
given by the relation

¢a = (1/pB.)} (18)

in which p is the density and 8, is the adiabatic
compressibility. Values of ¢, are given in Table VII.
The values of 8, are estimated from the values of the
compressibility in the literature.’

TasLe VII.
H2 CaHa
Bo(cm?/dyne) X 1012 500 100
Ca 1.7 X 105 1.9 X 105

We may note that the values of ¢, are a factor of
ten greater than the values of v, given in Table VI,
It follows that the average velocity with which the
bubble must expand in order to be formed in a
time near 7, is moderately subsonie.

7. ASSUMPTIONS CONCERNING EXPANSION

We shall now attempt to estimate the energy
which must be furnished in order to provide the
pressure needed to form the bubble before the heat
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is dissipated. The following assumptions will be
made in an initial attempt to resolve the problem:

(1) As mentioned previously, it will be assumed
that the thermal spike is localized in a spherical
volume of radius R, within which the temperature
and pressure are uniform. The values of R, given
in Table V will be employed when explicit values
are needed.

(2) If the fluid were not set in motion by the
pressure gradient, we would assume that the radius
of the heated zone increases in accordance with the
relation

R = 2(Dt)} (19)

in which D is the thermal diffusion coefficient and ¢
is the time. Actually, we shall assume that the motion
arising from dynamical factors is significant and
brings about the displacement of the initial heated
boundary from the value R, to R, in time ..

(3) It will be assumed that the pressure is pro-
portional to the thermal energy per unit volume
and varies in the manner

p = po(Ro/R)"". (20)

Here p, and R, are the initial pressure and radius,
respectively, and v is a parameter which takes
account of the fact that the expansion of the heated
zone may be accompanied by the expenditure of
thermal energy in doing work. This work reappears
in shock waves which radiate from the heated region.
If the energy lost were small, ¥ would be effectively
unity; if the energy were large, ¥ would be close to
the ratio of specific heats at constant pressure and
temperature. We shall see that the second choice is
more nearly correct, for the dynamic motion of the
boundary is much more rapid than that arising from
the flow of heat, as described by (19), until the
radius of the boundary reaches the value R.. Table
VIII contains values of v appropriate for adiabatic

TasLe VIII. Values of the parameter ¥ appearing in Eq. (20).
See text for meaning of the various values.

Hz CBHB
~(M) 9/7 = 1.286 31/30 = 1.0333
v(BP) 1.58 1.076
5 1.40 1.05
v —1 0.40 0.05
(Vo/Vo)r-1 7.518 1.343

expansion under various conditions. The first value,
v(M), is that to be used for the ideal gases when all
the degrees of freedom are excited in the classical
manner. The molar heat of H, at constant volume is

then 7R,/2 and that of propane is 30R,. The second
set of values, namely y(BP), are estimates for the
boiling points under the assumption that C, =
C, 4+ R,. The third set of values, v, are those which
will be adopted in treating the adiabatic expansion
of the superheated liquid under adiabatic conditions.
They are chosen somewhat arbitrarily as inter-
mediate between the other two values. Reasons for
preferring the adiabatic values will emerge later.
It may be noted that v is near unity for propane in
any case because of the many internal degrees of
freedom of the molecules.

It should perhaps be emphasized at this point that
the density of the material within the expanding
sphere of radius R can be expected to vary with time
both because new regions of the liquid become
heated and are incorporated within it, and because
it expands by pushing away the surrounding material.
In any case, it will be assumed that the heated zone
is homogeneous and exerts a pressure determined by
its energy content, in the manner of a perfect gas.

8. EQUATIONS FOR EXPANSION

One of the convenient features of the theory of
displacement of a fluid in three dimensions under
circumstances in which the expansion is directed
radially from the center and in which the flow is not
supersonic is that a fairly good approximation can
be obtained either by using the theory of sound or
by treating the medium as if incompressible. Such
approximate solutions are useful provided the
viscosity is not large. We shall assume initially that
the viscosity can be neglected and shall investigate
its influence later. It will turn out that it probably
is very important in fluids such as propane in which
the viscosity coefficient is of the order of 107 poise,
but probably is not critically important in liquid
hydrogen if the viscosity coefficient is as small as
10~* poise, the value'® for the normal fluid.

In the case of a uniformly expanding sphere within
a gas or liquid, G. I. Taylor'' has shown that the
solution obtained by superimposing sound waves is
very closely the same as that derived by introducing
a shock wave, provided the velocity of the sphere
is moderately subsonic. The more exact theory gives
a somewhat lower value of the pressure near the
sphere than the sound wave theory.

Michael Rogers of the Astronomy Department
of the University of Illinois has demonstrated to

10 The viscosity of liquid hydrogen is taken from the
Cryogenic Data Book (reference 5).
11 G, 1. Taylor, Proc. Roy. Soc. (London) 186, 273 (1946).
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the writer that the hvdrodynamical solution given
by the theory of the incompressible fluid is a good
approximation to that obtained by introducing a
shock wave and is probably adequate for our dis-
cussion under circumstances in which the viscosity
can be neglected, which, as mentioned above, is
questionable.

Consider an expanding sphere of radius R(f). The
equations of motion of the incompressible fluid'® are

du/ot + u du/or = —(ap/or)(1/p) (21
and

0wy /or = 0. (22)

Here u is the velocity of a fluid element at a radial
position r and p is the pressure, which depends upon
both time and position. The first is Newton’s
equation of motion and the second that of continuity
of the incompressible fluid. It is readily found that
an appropriate solution of the second equation is

uw = RR*/r* (23)
in which the dot signifies the first derivative with
respect to time in the usual way.

If this is substituted into (21) and the equation is
integrated with respect to r under the boundary

condition that p approach the value p’ at infinity,

we find
(p — p)/p = (RR + 2RR’) /r — R'R*/2+". (24)

In the immediate vicinity of the sphere, the pressure
P(t) satisfies the relation
(25)

(P(t) — p")/p = RR + (3R*/2).

If the pressure is constant and if B = Ry, R = 0
at t = 0, the first integral of (24) yields™

R* = 2¢[1 — (R./R)*)/3. (26)
If R, = 0, the second integral is
R = ¢(2/3)'. 27

Here ¢ = (p, — p’)/p in which p’ is the constant
value of P. This solution, coupled with the preceding
relation, is the incompressible fluid analog of Taylor’s
solution for a uniformly expanding sphere.

The case in which P satisfies the relation (20) can
be integrated when p’ is taken to be zero. This

12H, Lamb, Hydrodynamics (Dover Publications, New
York, 1945); M. S. Plesset, J. Appl. Mech. 16, 277 (1949).

13 The solution represented by Eqs. (26) and (27) was
obtained by M. Rogers. The solutions (28) and (29) appar-
ently were first found by H. Lamb, Phil. Mag, 45, 257 (1923).
The author is indebted to Dr. Rogers and to Professor G. C.
MecVittie for valuable discussions.

situation evidently is of great interest in our problem.
The first integral of (24) is
R® = 2¢,°[(Ro/R)* — (Ro/R)*"]/8(y — 1).  (28)

Here ¢,° = po/p in which p, is the initial pressure.
This may be integrated further when v = %, a
value close to that assumed in Table VIII for hydro-
gen. The result is

col/Ro = (22)¥1 + 22/3 + 2/5)

in which z = R/R, — 1. i
We may note that the term in R in (25) plays a
significant role in the foregoing solution, for (28)

would take the form
R* = 2¢,’(Ro/R)"" /3

if the term in B were dropped.

(29)

(30)

9. EQUATIONS FOR DETERMINING p,V,

We shall now establish relationships for deter-
mining the quantity p,V, = 4rp.R,’/3 by requiring
that the boundary R expand from the value R, to
to R, in the time 7,. It is clear that a time substan-
tially shorter than this would require a larger value
of P,V, and be unnecessarily short to form the
bubble of minimum stable size, whereas a time
substantially longer would allow the heat to diffuse
away.

To begin with, we shall employ the relation

Re

r, = dR/R

Ro

@1

in conjunction with the simplified relation (30)
obtained from (25) by assuming the term in R is
negligible. The lower limit of integration in (31)
may be replaced by zero in evaluating the integral.

The resulting equation may be placed in the form

3o/2)[2/By + 2T
’ (Rc/Tc)z(Rc/RO)a(y—l) Vc-
Values of this are given in Table IX.

Po Vo =
(32)

TasrLe IX. Values of poV, derived from Eq. (32) and values
of the corresponding E,,.

H, C;H,
poVolev) 9.72 15.1
v 2.5 15
Ey(ev) 24.3 226

The quantity p.V,, which is effectively % of the
translational energy of the molecules in the initial
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thermal spike, must be multiplied by a factor »
larger than unity to obtain the total energy of the
spike because of the internal degrees of freedom of
the molecules. This factor, », would be 3.5 for
hydrogen and 30 for propane if all the degrees of
freedom were excited classically during the expansion
of the thermal spike. We note, however, that for
the values of n,.V, in Table V and of 47R,*p,/3 in
Table IX, the temperature rise for all of the mole-
cules within the sphere of volume V, would be only
of the order of 100 degrees. Thus values of » some-
what lower than the maximum would be appropriate.
We shall, somewhat arbitrarily, take the values
2.5 and 15, given in the next to the last row of
Table IX. The energy of the thermal spike, namely

Ep = 47FVR03p0/3, (33)

is given in the last row of the table.

An alternative value for hydrogen may be ob-
tained from Eq. (29) by setting ¢t = r,, R = R,,
and solving for p,V,. The value v = 1.33 used in
deriving (29) is sufficiently close to the value of 1.4
adopted for hydrogen to make the comparison
valuable. The new value for hydrogen and the
corresponding value of E, are given in Table X.

TaBLE X. Values of poV, and the corresponding values
of E, derived from Eq. (29) (for H;) and from Eq. (35) (for
propane).

H, C;Hs
poVo(ev) 0.97 2.02
v 2.5 15
E(ev) 2.4 30.3

A corresponding solution for propane may be
obtained in the following way. When v is close to
unity, as is the case for this liquid, we may approxi-
mate the relation (28) in the manner

E* = 2c(Ro/R)’ log (R/Ry). (34)

If we insert this relation in the integral (31) and
treat the logarithmic term as if constant, we obtain

poVo = (2/25)[1/1og (R./Ro)lp(R./7)*V..  (35)

Corresponding values are given in Table X.

We note that the values given in Table X are of
the order of ten times smaller than those in Table IX,
in spite of the fact that the value of R used in
obtaining Eq. (32) was not zero when B = R,.
Evidently the high velocity of flow attained during
the initial period of high pressure persists in the
more exact solution derived by retaining the term
in R. As we shall see in the next section the viscosity

is sufficiently important that it seems unlikely that
the flow persists so easily in actual fluids. Hence the
writer is inclined to regard the values in Table IX
as more realistic than those in Table X.

The work done when a gas expands adiabatically
from volume V, to volume V, is

W = PVo(l — (Vo/V)"™)/y = 1) (36)

in which vy is an appropriate value of C,/C,. For
small values of (y — 1) log(V,/V.) this becomes
PV, log(V./V,), the value for an isothermal
expansion.

We note that P,V,/(y — 1) is essentially E,.
Thus whenever vy — 1 is not small compared to
unity, that is in a case such as that of hydrogen
(Table VIII), almost all the energy E, would be
expended in the process of adiabatic expansion by
the time the bubble reaches the critical size. Some-
what less is expended in a case such as that of
propane in which ¥y — 1 is small compared to unity.
However the magnitude of the ratio V,./V, guaran-
tees that a large part of the energy E, is expended in
the adiabatic part of the expansion in any event.

The fact that a substantial part of the outward
radial flow of the fluid occurs adiabatically in the
case of the ideal fluid justifies the use of the values
of v given in the third row of Table VIII in the
preceding treatment when considering the relation-
ship between pressure and the volume of the hot
zone.

It is perhaps worth noting in conjunction with
this discussion that the work done per unit in-
crease in volume dW/dV during any expansion,
is equal to p. Thus the void is produced more
efficiently when the pressure has diminished than
when it is near its peak value p,. Viscous behavior
near time 7, could impede the expansion and pre-
serve the energy in the spike for expansion at a later
time when the pressure is lower. The larger energy
expended when the pressure is higher appears in
the form of shock waves. We shall see in the next
section that the viscous behavior tends to be more
marked in the later rather than the earlier phases
of expansion.

10. RESISTANCE TO FLOW ARISING FROM
VISCOSITY

We shall attempt to estimate the resistance to
flow arising from the viscosity of the fluid under the
conditions of interest to us. Unfortunately the
analysis will be limited by the lack of accurate
information concerning the values of the viscosity
in the heated and compressed zone in which the
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flow oceurs. It is well known that the viscosity is
sensitive to temperature, generally decreasing with
increasing temperature; moreover Bridgman'* has
shown that the viscosity usually increases with
increasing pressure. The portion of the fluid in
which we are most interested is that around the
initially heated zone in which the pressure is greatest
and which is subject to the action of a shock wave
which raises its temperature as well as its pressure.
For lack of better information we shall assume that
the two effects compensate under the circumstances
of interest to us and that the appropriate value of
the viscosity of hydrogen is in the vieinity of 0.01
centipoise, whereas the appropriate value for propane
and similar fluids is near 1 centipoise.

The analysis will suggest that hydrogen behaves
nearly like an ideal fluid during the flow, whereas
propane probably behaves in a relatively viscous
manner during the period in which the velocity of
thermal flow would be small compared with that
of the displacement flow if the fluid were ideal.
Thus the picture developed in the preceding section,
is born out fairly closely for hydrogen. On the other
hand the picture is modified for propane. Viscous
forces inhibit the rapid flow.

The radial velocity described by Eq. (23) has
associated with it the radial compressive strain rate

¢ = 2BR* /7. 37

The radial strain rate is counterbalanced by exten-
sive strain rates of half the value in each of the two
angular direetion. If the medium possesses a vis-
cosity 5, the compressive strain rate is associated
with a radial compressive stress

P, = 2q¢ = —44R’R/7° (38)

which will resist acceleration of the fluid and hence
subtract from the applied pressure. The value of
(38) at the moving interface is

Pr = —43R/R. (39)

We may note from (24) that the first term on the
right-hand side drops off more slowly with r than
(38) for sufficiently large distances. Thus the effect
of viscosity definitely is negligible at large distances
if it is not important near » = R. On the other hand
the solution derived using the theory of the incom-
pressible fluid without taking account of viscosity
is in error near the moving interface if the value of
Pp derived using it is comparable to the applied
pressure obtained from (20) for the values of p,V,

4P, W. Bridgman, Proc, Am. Ac. Arts Sci. 61, 57 (1926).

obtained previously. Whenever P, is comparable
to or greater than P, the medium behaves more
nearly like a viscous solid for a region about the
moving interface and the expressions for the pressure
and velocity are different from those derived in
Sec. 8.

We shall consider the value of B for which P,
is equal to the applied pressure, treating first the
simple case in which E? satisfies the relation (30).
We find

Py? = 167°R*/R® = 32¢°P/3pR* = P*.  (40)
This leads in turn to the relation
(R/R)™™* = (9/128m)(p/n")
‘D Vo/R)R/R) V. (41)

The quantity on the right is about 0.61 for hydrogen
when 5 is chosen to be 107* poise. Since 3y — 2 is
2.2 in this case, it follows that R/R, is 0.80. It is
readily seen that the viscous pressure at the moving
boundary decreases relative to the applied pressure
when R/R, has a value smaller than this. Thus the
initial flow oceurs under circumstances in which the
viscosity is relatively small in hydrogen, the vis-
cosity being important only when B/R, is close to
unity.

The situation is very different for propane if the
appropriate value of 7 is near 10°% poise. The left~
hand side of (41) then is 1.5 X 107° so that R/R, =
3.5 X 107°. In other words the viscosity is very
important throughout the expansion. It follows that
the ideal behavior of hydrogen suggested by the
foregoing estimates is valid only if the very small
value of the viscosity is appropriate.

If we employ the more accurate values for R’
obtained from (28) and discussed in the preceding
section, we obtain

(R/R)" ™" = (9/128m)((y — 1)p/n")

: (pOVO/Rc)(RO/Rc)Mv—” (42)
in the case of hydrogen and
(R/R)*"™* = (3/128m)(1/log (R/Ro))(p/ ")

(P Vo/R)B/RY)* ™Y (43)

for propane. The term in log (R/R,) has been treated
as a constant in deriving the second relation. It is
clear that the conclusions drawn from the simpler
solution are not radically altered. The first equation
leads to a value R/R, = 0.36. The ratio remains
of the order of 107® in the second.

We may readily find a solution of the equations
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for incompressible flow if we assume that the
viscosity provides the dominant term resisting flow,
outweighing inertial effects. Relation (23) remains
valid, however the pressure when r = R is the
applied pressure (20). Thus we have Eq. (39) with
P replaced by (20). The time 7 required for the
sphere to expand from R, to R, is readily found to be

7 = (4/37)(n/poVo)(R./Ro)’ "V V..

If we set + = 7., we obtain an equation for p,V,.
The corresponding values are given in Table XI.
It will be seen that the value for hydrogen is nearly
the same as that given in Table IX; however, the

(44)

TasLE X1, Values of poV, derived from Eq. (43) under the
assumption that the appropriate viscosity for liquid hydrogen
is 10~ poise and that for propane is 10~ poise.

H2 CaHs
poVo(eV) 9.23 316
v 2.5 15
E(ev) 23.1 4750

value for propane is considerably larger. As pre-
viously, we may conclude that the influence of
viscosity is marginal, although not negligible, for
hydrogen if the value of 5 as small as 10™* poise
is valid, whereas viscosity is probably very im-
portant for propane and similar liquids which have
viscosities near 107? poise.

There is an indication in the preceding analysis
that the energy required to form a bubble in liquid
hydrogen in a practical case (Table III) is sub-
stantially larger than the theoretical values (Tables
IX, X, XI), in contrast with the situation for
propane (Table XI). Actually the estimates of the
viscosity we have employed are sufficiently crude
that the differences between experiment and theory
for the two cases probably cannot be taken exceed-
ingly seriously.

11, EXPANSION OF A RIGID SOLID

During an initial period of time after application
of stress any liquid behaves like an elastic solid.
The duration of this period depends upon the elastic
constants and the viscosity. It is very short for
fluids having viscosities in the range of interest to us.
For example, if the stress involves only the shear
modulus g, the relaxation time is of the order,

™. = 2q/p, (45)

which we shall estimate for propane.

The shear modulus of an isotropic crystal is
related to the compressibility 8 by the equation,

p=3(1 — 29)/26(1 + 9g), (46)

in which ¢ is Poisson’s ratio. If we assume that q is
near 0.3 in propane and take 8 to be 1.0 X 107"
cm’/dyne (Table VII), we find that

w22 4.6 X 10° dyne/cm’. 47

Thus 7, ~ 5 X 107** see, if 5 is assumed to be near
107? poise. The value of =, would be even shorter
for hydrogen if the assumption concerning 7 is
correct.

It is interesting to estimate the expansion which
an 1ideal elastic solid having the shear modulus
estimated above for propane would undergo as a
result of the presence of the initial heated zone. One
readily finds from the theory of elasticity® that the
amount by which an extended medium containing
a spherieal cavity of radius R, can expand when the
material in the cavity exerts a pressure p, on its
walls is

If we give p,V, the value 1 kev and u the value
(47), we readily find

AV =26 X 107" em’. (49)

Thus,
AV/V, = 0.09.

12. GROWTH OF A MACROSCOPIC BUBBLE

As mentioned in Sec. 2, Plesset and Zwick® have
treated the growth of a bubble in a superheated
fluid after the nucleus of critical size has been
attained. They have shown that both viscosity
and inertial effects become unimportant soon after
the bubble exceeds the critical radius. The ultimate
rate of growth is determined primarily by the rate
at which heat flows from the surrounding fluid to
the surface of the bubble to provide the heat of
vaporization of the liquid. In the steady state, the
vapor inside the bubble is close to the boiling tem-
perature T, of the fluid at the pressure p, |[Eq. (2)]
attained after the expansion of the chamber,
whereas the main body of the liquid is at the super-
heated temperature 7. The temperature drop
T — T, takes place in a zone having an approximate
thickness 2(D¢)} corresponding to the distance over
which heat diffuses in time ¢ after the creation of
the nucleating bubble of critical size.

The approximate asymptotic relation between
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radius R and time ¢ derived by Plesset and Zwick is
R = 23/m\T — T)V.8/H,D}, (50

in which A is the coeflicient of thermal conductivity
(Table III), V,, is the molar volume of the vapor,
H, is the heat of sublimation (Table I), and D is the
thermal diffusion coefficient (Table III). For
simplicity and without appreciable loss of generality
we shall assume that p, is one atmosphere and that
T has the values given in Table I. The coefficient
of t¥ in (50) then is 6.74 for hydrogen and 9.69 for
propane when { is expressed in units of sec. It
follows that a time of the order of a microsecond is
required to produce a bubble of macroscopic size
from the nucleating bubble which is formed in a
time between 107" and 107" sec.

It should be added that in deriving (50) it is
assumed that the number of molecules which pass
from the liquid to the vapor phase is limited only
by the flow of heat and that the rate coefficient for
evaporation is not in itself a limiting factor. More
specifically, it is assumed that the pressure inside
the bubble is automatically the equilibrium value
associated with the temperature of the inner wall.
It is easy to show that this is the case if the activa-
tion energy for evaporation is not substantially
larger than the energy of vaporization. Presumably
the two energies are almost equal in molecular
liquids of the type used in bubble chambers.

We have seen that the operating temperature of

the bubble chamber must be fairly close to the
critical temperature if the free electrons produced
by the incident particle are to be able to produce
a bubble of eritical size in all but highly improbable
cases. Thus T in (50) is fairly narrowly defined
for a given fluid. Of the other quantities appearing
in this relation, only 7', and V,, are adjustable. We
note that the product (I — T,)V, increases with
decreasing p,. V, is particularly sensitive, varying
inversely with p,. Thus it would appear that one
could increase the rate of forming macroscopic
bubbles indefinitely by lowering p, sufficiently. It is
easy to show that the rate of vaporization would not
be a limiting factor in this process if the activation
energy for evaporation and the energy of vaporization
are equal. Instead, it seems likely that freezing of the
liquid about the bubble as a result of evaporation
cooling would provide a limit to the advantage that
may be expected. Presumably such cooling would
occur through homogeneous nucleation when the
temperature at the inner wall of the bubble drops
appreciably below the freezing temperature.'
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