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A new method for the solution of exper imental  photonuclear  
yield functions for cross sections is presented. The method gives 
the " smoothes t "  set of cross sections as a funct ion of pho ton  
energy consistent  with the experimental  yield. For th is  reason 
the term " leas t  s t ructure  analys is"  is used to describe the  
method  of analysis. Cross sections derived by least  s t ructure  
analysis of t r ial  yield functions are presented. The resul t ing 

cross sections are compared to the assumed cross sections used 
to der ive the  t r ial  yield function.  

This  comparison fully justifies the use of least  s t ructure  
analysis  a t  all energies including energies higher than  the g ian t  
resonance energy where other  methods  have  failed to give 
physical ly acceptable solutions. Errors and resolution funct ions 
corresponding to the least s tructure solut ion of the t r ial  yields 
are also given. 

1. Introduction 

When high energy electrons strike atoms in a tar- 
get, X-rays are produced. When high energy X-rays 
strike nucleiin a sample, photonuclear reactions may 
occur. Typical photonuclear reactions would be the 
(7, n), (?, p) or the (.~, pn) processes. For a quanti- 
tative study of such processes, the intensity of the 
X-rays incident on the sample must be monitored. 
The ratio of the number of nuclear disintegrations 
of a given type in the sample to the monitor respon- 
se is the photonuclear yield Y. Y depends upon the 
kinetic energy To of the electrons incident upon the 
X-ray target; i.e. Y is a function of To. This func- 
tion, which can be experimentally determined, is 
called the photonuclear yield function. Typical 
units of Y(To) would be the number of nuclear 
disintegrations of a given type per mole of sample 
atoms per erg of X-ray dose. 

Unfortunately a spectrum of photon energies is 
produced when high energy electrons strike matter. 
This spectrum is known as the bremsstrahlung 
spectrum. Thus photonuclear disintegrations pro- 
duced by bremsstrahlung X-rays are induced by 
photons of many energies. For this reason, Y(To) is 
of little direct physical significance. However, 
Y(To) is related to the photonuclear cross section 
a as a function of photon energy k. a(k) has been 

* Contr ibut ion No. 1276. Work  was performed in  the Ames 
Labora tory  of the U.S. Atomic Energy Commission. 

determined for many photonuclear reactions by the 
analysis of yield functions Y(To). Photonuclear 
cross sections for most elements are found to be 
large for k in the energy region from 15 to 25 MeV. 
Thus, this region of photon energies has been called 
the "giant resonance" energy region. 

However, unless Y(To) has been measured with 
extreme precision, the cross section a(k) derived 
from the experimentally measured Y(To) oscillates 
drastically as a function of photon energy k unless 
a smoothing procedure is adopted. The tendency for 
oscillations in a(k) is especially pronounced at high 
energy k. For this reason (among other reasons) 
photonuclear cross sections are, as yet, little known 
above the giant resonance region. A new method for 
the analysis of photonuclear yield functions Y(To) 
for cross sections a(k) has been developed and is re- 
ported here. For reasons which will become ap- 
parent from later sections of this paper, the method 
is named "least structure solution of photonuclear 
yield functions" or, more briefly "least structure". 
Basically least structure is a systematic smoothing 
technique. The method is applicable at all photon 
energies k, but is particularly useful for k above the 
giant resonance region. Solutions of test yield 
functions are presented in a later section and the 
interpretation of these solutions is discussed. The 
distortion in a(k) is calculated for the test yield 
functions and is found to be nominal. Moreover, 
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least structure analysis of yield functions measured 
with only moderate precision (1% or better) give 
useful solutions of a(k) for all k. 

2. Photonuclear Yield Functions 

The photonuclear yield Y(To) at electron energy 
T o is related to the photonuclear cross section a(k) 
by the photonuclear yield equation; 

fTo 
Y(To) = A dka(k)NE,p(k, To), (1) 

Eth 

where E,h is the threshold energy for the reaction 
studied, N, xp(k, To) dk is the number of photons 
between energy k and energy k + dk striking the 
sample per unit monitor response. A is the constant 
of proportionality representing such factors as the 
number of atoms in the sample and perhaps other 
factors relating to the exact conditions of the ex- 
periment. In eq. (1), N,~p(k, To) is the actual spec- 
trum of photons striking the sample for the condi- 
tions of ~he experiment and not the spectrum 
N(k, To) for an electron of energy T o striking a 
single nucleus of the target, the bremsstrahlung 
spectrum. The bremsstrahlung spectrum N(k, To) 
is distorted by absorption of photons in the target, 
in any material between the target and the sample, 
and in the sample itself. The electrons striking the 
target may have an initial energy spread, and ener- 
gy losses in the target itself will further distort 
N(k, To). Moreover, N,xp(k, To) is normalized to a 
unit monitor response while N(k, To) is usually 
normalized per incident electron and per taxget 
atom. The monitor itself can be of any type with a 
known response M(k) for X-rays as a function of 
photon energy k. That is, the photonuclear yield 
equation (1) is dependent upon the particular con- 
ditions of the experiment. Penfold and Leiss t) 
discuss a function y(To), "the reduced yield func- 
tion", which may be obtained from the experimen- 
tal yield Y(To) in an unequivocal fashion, y(To) is 
related to the "reduced cross section" s(k) by a 
universal photonuclear yield equation. 

f ro  fro y(ro) = dks(k)N(k, To) ~ dkcr(k)N(k, To) , (la) 
Eth Eth 

where s(k) is related to ~(k) and in most cases can 

be taken as equal to a(k) to good approximation. 
(For this reason the symbol s(k) will not be used 
further in this paper.) Eq. (la) is now independent 
of the exact nature of the experimental arlange- 
ment. Note also that the constant A in eq. (1) has 
been incorporated into the definition of reduced 
yield. 

In this paper all experimental yield functions are 
assumed to be transformed into reduced form. 
Since this paper deals only with the mathematical 
problems associated with the solution of eq. (la) 
and not with the problem of measurement of valid 
photonuclear yield functions, we assume that all 
experimental yields can be transformed into the 
reduced form without error. This, of course, implies 
that the monitor response function M(k) is known 
exactly as well as other experimental factors 
distorting the spectra. With reasonable care valid 
reduced yield functions can be obtained from ex- 
perilnental data2). 

2.1. N A T U R E  O F  T H E  S P E C T R U M  

The bremsstrahlung function N(k, To) appearing 
in eq. (1) has been extensively studied both experi- 
mentally and theoretically3). However, to date, its 
exact form is known imperfectly, especially for 
values of k g T o, the so-called spectrum tip. In this 
paper N(k, To) will be taken as the integrated over- 
angle Schiff spectrum3)~ an approximation to N(k, 
To) which has been used extensively in the past for 
the solution of photonuclear yield iunctions. Distor- 
tions in e(k) due to the use of an approximate spec- 
trum will not be discussed for reasons given pre- 
viously. These distortions have been considered by 
others in the literature 1) and are thought to be 
minor. 

In practice y(To) is measured only at a finite 
number n of energies Toi; usually at energies Toi 
spaced in equal intervals AT o starting from the 
threshold energy E,h. Thus the ith energy Tog is 
related to the threshold energy E t u  by 

Toi = Eta + i AT o , i = 1, 2 . . . . .  n .  (2) 

1) A. S. Penfold and  J .  E. Leiss, Phys .  Rev .  114 (1959) 1332. 
2) D. W Anderson,  A. J .  Bureau,  B. C. Cook, J.  E. Griffin, 

J . R .  McGonnell  and  K.  N y b 6  (submi t ted  to Phys .  Rev.  Let ters)  
s) H.  W. Koch  and  J .  W. Motz, Rev.  Mod. Phys .  31 (1959) 

920. 
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Similarly the i th yield point y~ can be defined as 
y,  = y(To3. 

2.2. S O L U T I O N  OF T H E  P H O T O N U C L E A R  Y I E L D  

E Q U A T I O N  

Many authors have presented methods for the 
solution of the photonuclear yield equation (la). 
All such methods can be divided into two catego- 
ries: (1) solution of the integral equation (la) 
directly.or (2) solution of a set of l inear equations 
which approximate the integral equation. 

The photonuclear yield equation (la) is a Vol- 
terra equation of the first kind with kernel N(k, To). 
Several authors*) have given solutions, bu t  all use 
approximations to the bremsstrahlung spectrum 
N(k, To). The approximations are in general rather 
poor for k near the t ip of the spectrum (k ~ To). 
Moreover, the yield y(To) is not  known as a con- 
t inuous function of To, a condition implicit in the 
solution of the integral equation, bu t  rather it  is 
known only at a finite set of energies Toi. For these 
reasons the solution of eq. (la) in this paper is based 
on method 2. 

2. The Volterra integral equation can be replaced 
by a set of linear equations if N(k, Toi ) is approxi- 
mated in the following way. In  each interval  of 
photon energy, k I - A T o  to kj, the spectrum 
N(k, Toi ) is replaced by  a constant  N i t  NIj depends 
upon the electron energy To i and the photon energy 
kj. The value of NIj is chosen such that  

Ni~`4r o = dkN(k, Toi ) , Le., 
k j -  .tTo 

O( , , , i 

~o 
i 
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Fig. 1. The Schiff integrated-over-angle bremsst rahlung spec- 
t r u m  N ( k ,  To). The cont inuous spectrum N(k ,  To), as well as the 
"'step w i s e "  approximat ion  to N ( k ,  To), N'i j ,  are given  for T O 
of  20, 30 and 60 MeV and for k from 10 to  60 MeV. An energy 

in te rva l  ~ T  o of 1 MeV is assumed. 

each interval  of the approximate spectrum has the 
same number  of photons as the true spectrum 
N(k, To). The bremsstrahlung spectrum N(k, To) 
and this "step-wise" approximation to the spec- 
t rum is shown in fig. 1. Penfold and Leiss s) have 
discussed conditions on a(k) for which this approxi- 
mat ion to N(k, To) is valid and estimate the distor- 
tions in a introduced by  these approximations. 

In  the "stepwise" approximation eq. (la) be- 
comes 

y(Toi ) _~ y~ = dkN~ja(k) 
j = l  kj--~To 

= J=, ~(k) (3) (N~J`41"°) ~oo ,,-aro 

i 
= ~ N o a  j i = 1,2 . . . . .  n ,  

j = l  
where 

= 1 ('~ ~(k)dk 
aj ATo .J kj - a r o  

is the average value oi a(k) in the interval  of photon 
energy between kj - .4 To and k~, and N u = NIj`4 T o 
is the number  of photons in the bremsstrahlung 
spectrum in  the same photon energy interval  with 
electron energy T0i. In  matr ix  notat ion eq. (3) 
becomes 

~" = N . ~  (3a) 

where ~ i s  a column matr ix  with n rows with ele- 
-->. 

ments a j, y is a column matr ix  with n rows with 
elements yi, N is an n th  order square matr ix  with 
elements Ni j (N  u = 0 if j > 0 called the brems- 
strahlung matrix. Eq. (3a) has the a solution 

~ =  N-I.~. (3b) 

The mat r i x  N -  1 has been tabulated for many elec- 
tron energies up to 1 GeV for various energy intei-  
vals `4To for the Schiff spectrumS). Equat ion (3) or 
its equivalent form, eq. (3a), are the basic equations 

4) L. V. Spencer, Phys. Rev.  87 (1952) 196; 
R. Malvano, A. Molinari and M. Omini, Supplemento Nuovo 

Cimento X X I I I ,  (1962) 253. 
0) A. S. Penfold and J. E. Leiss, "Ana lys i s  of Photo  Cross 

Sections",  Physics Research Laboratory,  Univ .  of Ill., Cham- 
paign,  Ill.,  May 1958 (unpublished). 
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used in this paper. Unfortunately the solutions, 
eq. (3b), oscillate violently as a function of photon 
energy at energies above the giant resonance energy 
if the yields are known to moderate precision. For 
this reason these solutions are unacceptable 
physically. Thus smoothing of some nature must 
be used. 

2.3. T H E  I N T E R P R E T A T I O N  O F  S O L U T I O N S  AS 

T R A N S F O R M E D  Y I E L D S  

In order to understand the val idi ty  of least struc- 
ture, i t  is useful to consider the solution of eq. (3a) 

from another viewpoint.  The yield ~ is obtained 

from the cross section-~ by the application of the 

operator N to ~. If an arbitrary (operator) matr ix  
0 acts on each side of eq. (3a), one obtains 

~'*= 0"~ = O.N.'~-- N*.a, (4) 

where Y* is the result of applying the operator 

0. N = N*, the transformed spectrum N*, to-~. That  

is, the transformed yield ~* is related to ~ through 

N* just as ~ i s  related to b~through N. Experimen- 
tally this implies tha t  if one could obtain in the 
laboratory a spectrum N*(k, To) which could be 
approximated by  the matr ix  N*, using this spec- 

t rum one would measure a yield y*. A solution a is 
obtained by  sett ing 0 = N -1 such that  N* = 

0 - N  = N - 1 . N  = I ,  the  unit  matrix,  i .e .~* = ~. 
From this viewpoint N - t  is the operator which 

transforms y into another  yieldS* which is equal to 

the average cross section a. However  other  trans- 
formed spectra N* than  the unit  matr ix  I may  have 
simple physical interpretation. For  example, 

~ * =  N*.a 'could  represent the average of a ' ove r  
seveIal energy intervals ATo. From this viewpoint, 
the solution of eq. (3a) is no longer unique ; in fact 
an infinite number  of physically acceptable solu- 
tions to eq. (3a) are possible. 

2.4. M O T I V A T I O N  O F  L E A S T  S T R U C T U R E  

The least structure solution of eq. (3) was moti-  
va ted  from the following considerations: 

l. All smoothing should be applied to a(k) and 

not to y(To). If the smoothing were applied directly 
to the experimental  curve y(To), small distortions 
in y may be reflected as large non-significant devia- 
tions in a. 

2. Since the functional form of a(k) is unknown, 
no assumptions about the functional form of a(k) 
may  be made. Thus all curve fitting procedures, 
such as least squared adjustment  of parameters, are 
inappropriate. 

3. Completely numerical methods should be em- 
ployed. If French curves are used for smoothing, no 
objective assignment can be made to the errors to 
be associated with each solution. The solution is 
then subjective;  another observer analyzing the 
same data  may  give a differing solution• 

4. The amount  of smoothing to be employed 
should be non-arbi trary and determined only by 
the quali ty of the input  data. That  is, such ques- 
tions as whether one should use a three, five, or 
seven point formula for smoothing must be ans- 
wered a priori from the input  data  only. 

5. One must be able to est imate the distortions 
introduced by smoothing unequivocally. These 
distortions must be small enough so that  the 
smoothed solutions may  be identified as the cross 
section or have another simple physically signifi- 
cant interpretation. 

3. Least Structure 

For the present, consider the solutions of eq. (3a) 
from viewpoint one. Since there are n inhomoge- 
neous linear equations in n unknowns, there are n 
unique solutions to these equations in a strict ma- 
thematical  sense. However, the yields Yl are ex- 
perimental ly determined so that  they  are subject 
to errors, Ayi; i.e. yi  = y~ + Ayi where yi  would be 
the " t r u e "  yield with no error, y~ is related to the 
true cross section ~s by 

i 

; ,  = y N , j ~ j  i = l ,  2 . . . .  ~ .  (5) 

Thus any set of a / s  can be considered to be an ac- 
ceptable solution to the physical problem if 
~ 1 N i / r j  ~, y i ;  i.e., a solution is acceptable if the  
calculated yield, Yi = ~Ni ja j ,  is close to the ex- 
perimental  yield y~ at each energy Toi. 

This loose usage of " d o s e "  must  be made precise 
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before a ma thema t i ca l  analysis can  be s ta ted.  
Consider for the  m o m e n t  t h a t  the  t rue  cross section 
a(k) were known;  t hen  the  t rue y ie ldy(To)  der ived 
from ~ would also be known. In  s ta t is t ical  theory  
the  s ta t is t ical  var iable  X 2 where 

(Y' - ~)~ Z2= 

is f requent ly  defined. VY~ is the  s t anda rd  deviat ion 
in Yl. The d is t r ibu t ion  funct ion for X 2 is given in 
m a n y  s t anda rd  tex ts  in statist ics.  The mos t  proba-  
ble value  of X 2 is n - 2, i ts  average value is n and  
its var iance is 2n. X 2 d is t r ibu t ion  tables  are readi ly  
accessible. Note the  ma in  propert ies  of Z 2 are in- 
dependent  of the  knowledge of the  t rue  cross section 
and  depend only on the  n u m b e r  of poin ts  in  the  
photonuclear  yield y~ and  the  s t anda rd  devia t ions  

VYl. 

3.1. D E F I N I T I O N  O F  ~z 

Now define a funct ion ~2 closely related to X' 
of s ta t is t ics ;  namely  

~ =  9) i= ~1 (Vyi)2 ,=~1 (Vyi)2 

where aj  is any  set of n numbers .  T h a t  is ~2 is a 
funct ion of a j, j = 1, 2 . . . . .  n. Note t h a t  ~2 is 
re lated to X z in  the  same way as l ikel ihood is re la ted  
to probabil i ty .  A set of %'s  will be considered an  
acceptable  solut ion to eq. (a) if 

~ ( a j )  < ,~. (8) 

Such solutions aj  are said " t o  sat is fy  the  photo-  
nuclear  yield equat ion  in a ~2 sense" or are said to 
be "acceptable  solutions to the  physical  p rob lem."  
Solutions of eq. (3a) are acceptable  solutions to the  
physical  problem in this  sense as ~2 is zero in th is  
case, However  there  are now an  infinite set of 
solutions, a j, all acceptable.  Thus  a solution is said 
to be "close" if t he  ;(2 corresponding to th is  solution 
is less t h a n  n, the  n u m b e r  of da ta  points.  The 
s t anda rd  deviat ion VY~ in  the  exper imenta l  yields, 
y~, can be es t imated  from the  count ing  stat is t ics  
or, preferably,  b y  the  reproducibi l i ty  of the  yields 
at  the  same electron energy. 

3.2. T H E  S T R U C T U R E  F U N C T I O N  S 

We will a t t emp t s  to select from this  infinite 
manifold  of physical  solutions the  " s m o o t h e s t "  set  
of solutions. For  th is  purpose an  auxi l iary  funct ion 
S(aj)  called " t h e  s t ruc ture  func t ion"  will be de- 
fined. W i t h i n  cer ta in  wide limits,  t h e  exact  defini- 
t ion  of S(aj)  is arbi t rary .  Several definitions of S(aj)  
have  been extensively explored, name ly :  

n--1 
Sl(O'j) = ~ (O'j+ 1 --O'j) 2 (9a) 

j=1 
and 

n--I 

S2(O'j) = ~ ( a j +  1 - -  2 a j  + a j _ l )  2 . (9b )  
j - 2  

Note no  funct ional  form for the  cross sect ion a i as a 
funct ion  of pho ton  energy kj is assumed;  in  these  
definitions aj  are a rb i t r a ry  numbers .  The  least  
s t ruc ture  solution to the  b remss t rah lung  yield 
funct ion (3a) is now defined as t h a t  set  of aj  which 
minimizes the  s t ruc ture  funct ion (eq. 9) wi th  the  
res t r ic t ion t h a t  ~2 = n. The solut ion wi th  ~2 = n 
is called the  solution wi th  op t imum smoothing,  or 
more briefly the  solut ion;  solutions w i th  ~2 < n 
are said to  be undersmoothed  and  solutions wi th  
~2 > n are said to be oversmoothed.  

The form of the  s t ruc ture  funct ion S(aj)  while  
arb i t rary ,  is mo t iva t ed  b y  the  following in tu i t ive  
considerations.  Wi thou t  restr ict ions imposed b y  
the  exper imenta l  data ,  the  least  s t ruc ture  funct ion 
S(aj)  should  have  value zero. Solutions of S(aj)  = 0 
should sat isfy our in tu i t ive  concepts  of a ve ry  
smooth  funct ion or a s t ructureless  funct ion.  (A 
solution % with  m a n y  hills and  valleys should  have  
a large value of the  s t ruc ture  funct ion S(aj).) The  
solution of S t ( a  j) = 0 and  S2(ai) are shown in fig. 2. 
The first is a cons tan t  independen t  of kj while the  
second solution corresponding to $2 = 0 is a l inear  
funct ion of kj. Bo th  solutions are in tu i t ive ly  ac- 
ceptable  as a funct ion wi th  no s t ructure .  

However  if an  exper imenta l  yield curve  is known, 
the  least  s t ruc ture  solution will not  be in general  a 
s t ra igh t  l ine bu t  m a y  have  more s t ructure ,  as all 
acceptable solutions are const ra ined to sat isfy the  
photonuclear  yield equa t ion  in a 2 2 sense. F rom an  
operat ional  s tandpoin t ,  the  least  s t ruc ture  solution 
is quite desirable,  as speaking loosely, i t  is t he  most  
conservat ive solution to the  yield equat ions (3a). 
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Fig. 2. Leas t  s t ructure  solutions wi thou t  restraints.  Solution of 
Sl(aj)  = 0 and Ss(aj) = 0 are given corresponding ~to no 
knowledge of the yield function. The solution cq corresponding 
to St(el) = 0 is labeled S 1 and similarly for S 2. The magni tude  
of the S 1 solut ion is a rb i t rary  while the  slope and in tercept  a t  
the threshold energy of a line th rough the S 2 solution are both  

arbi t rary.  

This  corresponds closely to the  way in which da ta  
are normal ly  presented.  If  a peak  or val ley seen in an  
exper imenta l ly  de te rmined  curve is s ta t is t ical ly  
improbable ,  no claim is ordinari ly  made  t h a t  the  
effect is real. Thus  a peak found in a cross section 
derived from a photonuclear  yield funct ion wi thou t  
smooth ing  should  be considered spui ious  if ano the r  
physical ly  acceptable  solution can  be found in 
which the  peak  disappears.  This,  of course, does not  
imply  the  peak  is or is no t  val id in  na tu re ;  only t h a t  
more precise da ta  would be required to answer the  
quest ion.  

3.3. T H E  L E A S T  S T R U C T U R E  S O L U T I O N  AS A 

V A R I A T I O N  P R O B L E M  

The ma thema t i ca l  procedure for f inding the  
solution aj  which minimizes S(aj) with  the  addi-  
t ional  res t ra in t  t h a t  ~2(gj) = n = const,  is a well 
known  problem in the  calculus of var ia t ions.  S(aj) 
can  be considered as a Lagrangian  wi th  dynamica l  
var iables  gj. The  var iables  gj are const ra ined to lie 
on a surface 2 2 = const.  Using s t anda rd  methods  of 
var ia t ional  calculus, t he  problem can be wzi t ten as 

,~5(~.) + 6~2(~j) = O, (I0) 

wtaere 2 is a Lagrangian  mul t ip l ie r  in t roduced  in 
the  convent ional  way. In  eq. (10), t he  var ia t ions  are 
to be t aken  wi th  respect  to the  cb's. After  some 

algebraic manipu la t ions  eq. (10) can be placed in 
the  following simple form:  

(N + 2 (N)- 1. (W)-I-  S)-3 = ~, (I l a) 

where N is the  b remss t r ah lung  matr ix ,  

( ~ ) -  t is the  inverse of the  t ransposed  N matr ix ,  
S is a smooth ing  ma t r ix  the  exact  fo im of which 

depends  on the  form of S(aj), 

Y i s  the  exper imenta l  yield, 

a is the  least s t ruc ture  solut ion for the  cross 
section, 

W is a diagonal  m a t r i x  wi th  e lements  W u = 
( l /vy3  2. 
An equa t ion  s imilar  to (11a) has  been used for the  
numerica l  solut ion of in tegral  equat ions  pre- 
viously6). Equa t ion  (1 la) represents  n equat ions  in 
n unknowns  a~ plus an  addi t iona l  unknown ~; i.e., n 
nonl inear  equat ions  in n + 1 unknowns.  However  
(repeated here for convenience as 1 lb) ,  Eq. (8) mus t  
also be satisfied, name ly  

(' ) : =  i .r x : i w z , -  , ;  
i=1 j 1 i=1 

(lib) 

where the  weight ing factors W~ are given by  
W~ = (1lAy2) 2. In  ( l l b )  solutions aj  wi th  2 2 = n 
h a v e o p t i m a l s m o o t h i n g ,  x 2 < n a r e u n d e r s m o o t h e d  
solutions,  and  2 2 > n are oversmoothed  solutions.  
S depends upon  the  exact form of S(aj), and a tech- 
nical  point  about  the  na ture  of the  var ia t ions  3aj at  
the  beginning and  end points.  (In Hami l ton ' s  prin- 
ciple of mechanics  3t = 0 at  t = t l n i t i a  ! and t = t fi,,t; 
in least  s t ruc ture  s imilar  restr ic t ions may  be made 
if desired.) If  no restr ict ions on the  var ia t ion  5aj are 
made,  the  smooth ing  m a t i i x  S, corresponding to 
Sl(aj )  is 

1 - 1  0 0 
1 - 2  1 0 
0 1 - 2  1 
0 0 1 - 2  

S 1 = 

0 • 
0 - 
0 • 

. . . .  0 - -  

0 
. . . .  0 

1 0 
. . . . .  I 

0 1 - 2  1 0 
0 1 - 2  1 
0 0 - 1  t _  

e) D. L. Phillips, Journal  of the Association for Comput ing  
Machinery 9 (1962) 84. 
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S 2 = 

1 - 2  1 0 0 - 0 
- 2  5 - 4  1 0 . . . . .  0 

1 - - 4  6 - - 4  1 0 - 0 

0 1 - 4  6 - 4  1 0 

0 - 0 1 - 4  6 --4 1 0 
0 • 0 1 --4 6 --4 1 
0 • 0 1 - - 4  5 - 2  

0 • 0 0 1 - - 2  1 

Thus  each smoothing  ma t r ix  is a mat r ix  wi th  
cons tan t  coefficients, independen t  of aj. The values 
of the  coefficients are de te rmined  b y  the  funct ional  
form of S(as). Note St is the  second difference 
opera tor  while S 2 is the  four th  difference operator  
(except for the  first and  last  few rows). T h a t  is, 

S t  • a" is the  second difference in ~', and  a s imilar  

i n t e r p r e t a t i o n  of S 2-b-holds.  
A compu te r  p rog ram in Fo r t r an  has  been wr i t t en  

for an  IBM 704 to solve the  equat ions  of least  s t ruc-  
ture  (eq. 11). In  this  code 2 is chosen a rb i t ra r i ly  as 
a n  input  pa rame te r  and  eq. (11a) is solved for 
fixed 2. The so lu t ions  are t h e n  subs t i t u t ed  into 
eq. (11b) and  a ~2 is computed.  This  es t imate  of 2 is 
compared  wi th  the  input  ;(2 and  an  allowed error  in 
~fi2n, VX2. I f  the  calculated ~2 is wi th in  X~, + AZ~n, 
the  solut ion is considex ed acceptable ;  otherwise b y  
a n  i t e ra t ive  procedure a new 2 is selected and  new 
solut ions are obtained.  The  i t e ra t ions  are repeated  
u n t i l  eqs. ( l l a )  and  ( l l b )  are b o t h  satisfied ( l l b  in 
an  app rox ima te  fashion).  

Once 2 has  been  ob ta ined ,  the  m a t r i x  td = b/ + 
2(N) -1-  W -1 .5  is de te rmined  unique ly  as well as 

y*  = M -  1 .y. The ent i re  corre la t ion  m a t r i x  (ERM),j  
= a v ( A ~ l ~ j )  

= Z M~ IM~t(Vy~) 2 (13a) 

as well as the  error  Fa I in  aj  

Vaj = ~/(ER---R~Li = - 1 (Mj. - 1)2(Vy,) 2 (13b) 

can  be calculated.  The  t r ans fo rmed  spec t rum N* 
(eq. 5) 

N = N* = M - 1 . N  

is also calculated. The form of N* as a funct ion of 
pho ton  energy k justifies an  a l te rna t ive  name:  call 
i t  the  resolut ion funct ion R. 

Five  smooth ing  requi rements  were made  ealier. 
Least  s t ruc ture  meets  all five: 

1. S(a j )  is a funct ion of the  a j s ;  no t  t hey i ' s .  
2. The funct ional  form of a I as a funct ion of k j  is 

not  assumed. Ins tead  an  a rb i t r a ry  funct ion of the  
a l s  as parameters .  S(aj ) ,  is assumed. 

3. Expl ic i t  forms foi the  a i ' s  are given and  also 
for the  associated errors. 

4. The condi t ion for s topping is when  the  solution 
has  op t ima l  smoothing,  i.e., X 2 = n. 

5. The dis tor t ions  can be es t imated  by explicit  
calculat ions of the  t r ans fo rmed  ma t r ix  N*. For all 
calculations made  to date  N* can be in te rpre ted  as 

a resolut ion func t ion  R averag ing-~  over  a few 
energy in te rva ls  wi th  an  approximate  Gaussian 
funct ion  weight ing.  

4.  U s e  o f  T r i a l  Y i e l d  F u n c t i o n  

To tes t  the  usefulness of least  s t ruc ture  for the  
analysis  of photonuc lear  yield funct ions,  two artifi- 
cal cross sections, GRA and  GRH,  were assumed. 
GRA is single Gaussians centered at  20 MeV and  
G R H  had  two Gaussians,  one centered at  20 MeV 
and  the  second a t  40 MeV. The  funct ion form of the  
assumed cross sect ions were 

[ k  - k t \  2 [ k  - k2\ 2 
a ( k ) = A  l e x p - ½ ~ )  + A u e x p - ½ ~ )  

(14) 

where  the  cons t an t s  were assigned t he  following 
values:  

A 1 
A2  
k l  

h i  

/'1 
/", 

G R A  G R H  

1.0 1.0 
0 .0  0 . 2 0  

20  M e V  20  M e V  
- -  40  M e V  

2 M e V  2 M e V  
- -  4 M e V  

The cross sections are shown in fig. 3 GRA (Gian t  
Resonance;  Absence of Haimonic)  is a single " g i a n t  
resonance"  type  cross sect ion while G R H  (Gian t  
Resonance plus Harmonic)  is a ga in t  resonance plus  
an  upper  resonance.  Hypo the t i ca l  yield curves were 
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GRA 

0 

GRH 

IO 2.0 30 40 50 
PHOTON ENERGY K (MBV) 

Fig. 3. Test  cross sections. Cross section " G R A "  (giant  reSO- 
nance wi th  absence of harmonic) s imulates  ~(k) wi th  a single 
resonance a t  20 MeV while " G R H "  simulates  ~-(k) wi th  a g ian t  
resonance a t  20 MeV and a harmonic  a t  40 MeV. The in tegra ted  
cross section of the 40 MeV resonance is 40~o of t h a t  a t  20 MeV. 

generated by integration of each assumed cross 
section weighted by the Shift bremsstrahlung spec- 
t rum (eq. 1). The threshold energy was taken at 

10 MeV and a maximum electron energy To of 
60 MeV was assumed. The resulting yield function 
~(To) is shown for each cross section in fig. 4. Yield 
curve GRA is generated from cross sections GRA;  
and similarly for GRH. Simulated experimental  
yield functions were generated from both .Y(To) by 
assigning ezrols Ayi i ny i  and le t t ingyi  = Yi + aye. 
The electron energy To, was taken in intervals of 1 
MeV from 11 MeV to 60 MeV; i.e., a yield function 
measured at 50 energies was assumed. The errors 
Ay i assigned at electron energy To~ were selected 
randomly with a normal error distribution. For  
each hypothet ical  yield curve y(To), ten  simulated 
yields y~ were generated with standard deviations 
in y, of 1% of y, and ten curves were generated for 
both yields with standard deviations of 0.3 %. Thus 
the percentage accuracy in each yield point Yi was 
assumed to be a constant independent of energy. 
(Experimental ly act ivation functions are frequent- 
ly  measured with constant percentage accuracy 
except  at  energies near threshold). Since the same 
random numbers were used to generate the 1 ~/o 
da ta  as the 0.3% data, the error Ay, assigned for 
the 0.3 % data is 0.3 t imes the error assigned for the 
1% data for corresponding curves at the same 

I I I I 

I0 20 3o 40 50 60 

ELECTRON ENERGY T o (MeV) 

Fig. 4. Yield funct ions generated from G R A  and G R H .  The cont inuous curve is a smooth curve drawn th rough  the yields 
generated from the  assumed cross sections. The points  shown represent a tes t  yield funct ion wi th  1~/o s ta t is t ical  error. The 
no ta t ion  is as follows: G R H  1 yield funct ion generated from cross section G R H  and the first set of r andom numbers  used to  

assign errors a t  each poin t ;  (1.0), percentage error assumed. 
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O~ 

E ~ 

o 
m C 
~1.¢ 

- 0.~ 

-o< 

-OE 

-0.8 
I0 

V 

GRAI (0.3) 

vVv / I 

2~ 3~ 2o ~o 
PHOTON ENERGY g MeV 

Fig.  5. So lut ion  of G R A  1(0.3) w i t h o u t  smoothing .  

6 0  

5 

o 

%, 

0.2 

I0 ~ , ~ 0 ~ . ~ ' ~ ' - . , . ~  I ~  ~ ' - - " f S O  60  

GRAI(I.O) 

i 
20 ~ 30 

PHOTON ENERGY K (MeV) 

ID I I 

GRA I (0.3) 

0.2 

O 10 20 30 ~ - - ' - " 4 0  ~ " ~ 5 0  ~ 60 

PHOTON ENERGY K (MeV) 

Figs.  6 and 7. Leas t  s tructure  solut ions  of  G R A  1 for 1% and 0.3% stat ist ical  accuracy  of  the  yie ld  funct ion.  
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I I I 

io zo  30 40  ,50 60  

PHOTON ENERGY K (MeV) 

Fig. 8. Least  s t ructure  solutions of G R H  for 1% data.  Ten 
solut ions are given corresponding to ten yields functions 
generated from the tes t  cross section. The residual effects of 
s ta t i s t ica l  errors in Yi on the cross section can be es t imated 
from the f luc tuat ion  from example to example. The negat ive  
cross section near 27 MeV in all solutions is a d is tor t ion pro- 

duced by the method  of analysis. 

Fig. 9. Least  s t ructure  solutions of G R H  for 0.3% data.  
Solut ions corresponding to those of fig. 8 are given for yield 
curves with 0.3% accuracy. The solutions are improved  over 
those of fig. 8 bu t  qua l i t a t ive ly  the solutions are the same. 

G R H  f~ (Q3) 

~ J  

[ I 
30 40 

PHOTON ENERGY K (MeV) 

\ 
I 

s 0  6 o  
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energy. Thus cross sections derived from 0.3% 
yield data  can be compared po 'nt  by point with 
cross sections derived from 1% data without the 
additional complications introduced by random 
fluctuations if independent errors were assumed. 
The points shown in fig. 4 represent a simulated 
yield function with 1% error. Note the existence of 
the 40 MeV resonance in G R H  is clearly evident as 
a change in slope near 40 MeV although 1% errols 
are assumed. Simulated experimental  yield func- 
tions y~ and the least structure solutions a I are 
labeled by the cross section assumed, GRA or GRH, 
by the set of random numbers used to select the 
errors (1-10), and by the standard deviation of the 
errors (0.3 or 1.0%). For  example G R H  1 (1.0) 
implies cross section GRH, the first set of random 
numbers, and 1.0% errors. 

A typical solution without smoothing is shown 
for 0.3% data  in fig. 5. No 40 MeV resonance was 
assumed but  the fluctuations in aj are too large to 

=o 

c 

-O.2 

~ GRH I (1.0) 

2; ;o ,'o ~ ,o 
PHOTON ENERGY K (MeV) 

I I I [ 

¢nfl-- GRH I (03) - -  

o 

c 

-~ I I L I 
2O 30 4O 5O gO 

P~TON ENERGY K (MeV} 
Figs. 10 and  11 Leas t  s t ruc tu re  solut ions of G R H  l ( l . 0 )  and  
G R H  l (0  3). The  s t a t i s t i ca l  errors  and  resolut ion are  shown a t  
r ep resen ta t ive  energies The  resolut ion is t he  full  w id th  a t  ha l f  
m a x i m u m  of the  resolut ion func t ion  R de te rmined  by the leas t  

s t ruc tu re  ana ly s i s  

I F I I 
f ~  

/ / ' ~ I  GRH n (03) 

_o = 

i - 

I I I I 
20 30 40 50 60 

PHOTON ENERGY K (MeV) 

Fig.  12. 
Leas t  s t ruc tu re  solut ions  of G R H  using a S 1 s t ruc tu re  funct ion.  

make any statements  about aj above 30 MeV. For  
1% data  the fluctuations are ten t imes the giant 
resonance peak at 20 MeV. Least structure solutions 
corresponding to yield function GRA 1 for 1% and 
0.3% data is shown in figs. 6 and 7, respectively. 
The least structure solutions a3 although differing 
from the underlying " t r u e "  cross section in some 
respects, are quite acceptable. Unless otherwise 
specified, all least structure solutions illustrated 
will be for structure functions $2. 

Least structure solutions for simulated yield 
functions generated by G R H  n (40 MeV resonance) 
are shown in figs. 8 and 9. Ten solutions, each cor- 
responding to an independent yield function are 
given. Fig. 8 represents 1% data and fig. 9, 0.3% 
data. The 20 and 40 MeV peaks in aj are clearly 
evident in all solutions although fluctuations in aj 
due to statistical fluctuation in the yields have not  
been completely eliminated. Solutions of yield 
curves G R H  1(1.0) and G R H  1(0.3) are repeated in 
figs. 10 and 11 with the statistical errors at repre- 
sentativ e energies (eq. 13b) indicated as well as the 
energy resolution (full width at half maximum) im- 
plicit in least structure. Least structure solutions 
do not fluctuate as a function of photon energy as 
the solutions at adjacent  energies are correlated 
This correlation in aj must be recognized for the 
proper interpretat ion of the assigned error but  does 
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not invalidate least structure. (Solutions without  
smoothing are more strongly anticorrelated than 
the least structure solution is correlated). The 
complete correlation matr ix  (ERM),j (eq. 13a) has 
been calculated in a few cases but  will not be re- 
produced here. The correlations are found to be 
large for energy intervals comparable to the resolu- 
tion. The fluctuations seen in the solutions % 
shown in figs. 8 and 9 are comparable in magnitude 
to the errors calculated by eq. (13b). 

In  fig. 12 solutions for G R H  (0.3) using a $1 

structure function are presented. The similari ty of 
these solutions to those using $2 is clear. Thus least 
structure solutions are gratifyingly independent of 
the particular arbitrary formulation of least struc- 
ture used. In  figs. 13 and 14 solutions for G R H  1 
are shown with ~2 as a parameter  for 1% and 0.3 % 
data. Solutions corresponding to z 2 < 50 are under- 
smoothed solutions and those cozresponding to 
~2 > 50 are oversmoothed solutions. Again it is 
found that  the nature of the solutions is not  strongly 
dependent upon the smoothing chosen. 

20 50 40 50 60 ~ 20 50 40 50 60 

PHOTON ENERGY K (MeVl PHOTON ENERGY K(MeV) 

Figs. 13 and 14. Effects of smoothing.  Solut ion o5 G R H  I(I.0) and GIRH (0.3) are g iven  with ~2 as a parameter .  The solut ion 
with Z 2 -- 50 corresponds to o p t i m u m  smoothing,  solutions wi th  ~ < 50 are undersmoothed and solut ion wi th  ~ > 50 are 

oversmoothed.  
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5. Validity and Interpretation of Least Structure 
Solution 
The va l id i ty  of least  s t ruc ture  has  been unequi-  

vocally justified for cross sections of the  type  tes ted  
in this  section by  a direct  compar ison of the  least 
s t ructure  solutions to the  original  solution. An ob- 
ject ion might  be raised t h a t  the  solution m ay  be 
complete ly  inval id  for o ther  cross sections. How- 
ever the  t rans formed spec t rum N*(eq. 5) can be 
calculated for all least  s t ruc ture  solutions wi thou t  
a knowledge of the  t rue a. In  this  way dis tor t ions  in 
a(k) can be es t imated  using the  exper imenta l  da ta  
only. In  figs. 15 and  16 N*, calculated for 1% and  
0.3 % inpu t  data ,  is sho~al a t  representa t ive  elec- 

16 i i i I 
IG 

m 0 EZ 58 

28 34 40 46 52 

PHOTON ENERGY K (MeV)  

F T I l 

_1o 16 

~ 22 
~. - 28 58 

O2 

C 

-O.2 

PHOTON ENERGY K (MeV) 

F i g s .  15 a n d  16. L e a s t  s t r u c t u r e  r e s o l u t i o n  f u n c t i o n s .  R e s o l u t i o n  
f u n c t i o n s  d e t e r m i n e d  u s i n g  G R H  1, a S s s t r u c t u r e  f u n c t i o n ,  a n d  
o p t i m u m  s m o o t h i n g .  E a c h  c u r v e  r e p r e s e n t s  a s m o o t h  c u r v e  
t h r o u g h  a r o w  of  R .  T h e  c u r v e s  a r e  l a b e l e d  b y  t h e  e l e c t r o n  

e n e r g y  T O in  M e V  of  t h e  y i e l d  p o i n t  t o  w h i c h  i t  c o r r e s p o n d s .  

t ron  energies T 0. Excep t  at  the  highest  energies 
N*(k, To) is approx imate ly  symmetr ica l  about  T o 
as a funct ion of k. For  I To-k [ large, N* is small  
a l though one to two oscillations about  zero are 
found. However  the term, resolut ion funct ion  R for 
the  more general  expression " t rans formed  spec- 
t r u m "  is complete ly  justified in this  case. The inter-  
p re ta t ion  of the  least s t ruc ture  solutions as cross 
sections foI the  tes t  curves is val id as t rans formed 

yield (eq. 4) (~* = N*.~)  can be in te rpre ted  as a 
cross section since N* has the  na ture  of a resolution 
function.  On the  contrary ,  if N* were a drast ical ly  
d is tor ted  funct ion of k, least  s t ruc ture  would fail. 
Thus  dis tor t ions  produced by  least s t ruc ture  can be 
es t imated  from the  input  da ta  only, wi thou t  an  a 
priori  knowledge of the  " t rue  cross sect ion".  The 
calculated errors (eq. 13b) represent  s t andard  devia- 
t ions of the  cross section weighted b y  the  resolution 
funct ion R and  not  deviat ions  of the least s t ruc ture  
solut ion from the  t rue cross section. 

6. Conclusion 

In conclusion, least  s t ruc ture  has been shown to 
be a useful me thod  for the  solution of photonuclear  
yield functions.  Any  dis tor t ion in t roduced b y  the  
me thod  can be es t imated  a posteriori so t h a t  the  
va l id i ty  of the  solution can be tested.  Errors  can be 
assigned to the solution. The me thod  has  been used 
successfully in th is  l abora tory  for several  experi- 
men ta l ly  measured yield funct ions as well as o ther  
tes t  funct ions not  described in this  paper.  
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