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A new method for the solution of experimental photonuclear
yield functions for cross sections is presented. The method gives
the “‘smoothest’ set of cross sections as a function of photon
energy consistent with the experimental yield. For this reason
the term “'least structure analysis’’ is used to describe the
method of analysis. Cross sections derived by least structure
analysis of trial yield functions are presented. The resulting

1. Introduction

When high energy electrons strike atomsin a tar-
get, X-rays are produced. When high energy X-rays
strike nucleiin a sample, photonuclear reactions may
occur. Typical photonuclear reactions would be the
(v, n), (y, p) or the (y, pn) processes. For a quanti-
tative study of such processes, the intensity of the
X-rays incident on the sample must be monitored.
The ratio of the number of nuclear disintegrations
of a given type in the sample to the monitor respon-
se is the photonuclear yield Y. Y depends upon the
kinetic energy T, of the electrons incident upon the
X-ray target; i.e. Y is a function of T,. This func-
tion, which can be experimentally determined, is
called the photonuclear yield function. Typical
units of Y(T';) would be the number of nuclear
disintegrations of a given type per mole of sample
atoms per erg of X-ray dose.

Unfortunately a spectrum of photon energies is
produced when high energy electrons strike matter.
This spectrum is known as the bremsstrahlung
spectrum. Thus photonuclear disintegrations pro-
duced by bremsstrahlung X-rays are induced by
photons of many energies. For this reason, Y(T) is
of little direct physical significance. However,
Y(T,) is related to the photonuclear cross section
¢ as a function of photon energy %. o(k) has been

* Contribution No. 1276. Work was performed in the Ames
Laboratory of the U.S. Atomic Energy Commission.

cross sections are compared to the assumed cross sections used
to derive the trial yield function.

This comparison fully justifies the use of least structure
analysis at all energies including energies higher than the giant
resonance energy where other methods have failed to give
Pphysically acceptable solutions. Errors and resolution functions
corresponding to the least structure solution of the trial yields
are also given.

determined for many photonuclear reactions by the
analysis of yield functions Y(7T,). Photonuclear
cross sections for most elements are found to be
large for % in the energy region from 15 to 25 MeV.
Thus, this region of photon energies has been called
the ‘‘giant resonance” energy region.

However, unless Y(T',) has been measured with
extreme precision, the cross section o(%) derived
from the experimentally measured Y (T,) oscillates
drastically as a function of photon energy % unless
a smoothing procedure is adopted. The tendency for
oscillations in ¢(%) is especially pronounced at high
energy k. For this reason (among other reasons)
photonuclear cross sections are, as yet, little known
above the giant resonance region. A new method for
the analysis of photonuclear yield functions Y (7y)
for cross sections ¢(k) has been developed and is re-
ported here. For reasons which will become ap-
parent from later sections of this paper, the method
is named “‘least structure solution of photonuclear
yield functions’ or, more briefly ‘‘least structure”.
Basically least structure is a systematic smoothing
technique. The method is applicable at all photon
energies &, but is particularly useful for £ above the
giant resonance region. Solutions of test yield
functions are presented in a later section and the
interpretation of these solutions is discussed. The
distortion in ¢(k) is calculated for the test yield
functions and is found to be nominal. Moreover,
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least structure analysis of yield functions measured
with only moderate precision (19, or better) give
useful solutions of (%) for all &.

2. Photonuclear Yield Functions

The photonuclear yield Y(T,) at electron energy
T, is related to the photonuclear cross section ¢(%)
by the photonuclear yield equation:

To
Y(Ty) = 4 f ko Neb To) (1)
th

where E; is the threshold energy for the reaction
studied, N,,(k, T,) d% is the number of photons
between energy % and energy & + d# striking the
sample per unit monitor response. 4 is the constant
of proportionality representing such factors as the
number of atoms in the sample and perhaps other
factors relating to the exact conditions of the ex-
periment. In eq. (1), N, (k, Ty) is the actual spec-
trum of photons striking the sample for the condi-
tions of the experiment and not the spectrum
N(k, T,) for an electron of energy T, striking a
single nucleus of the target, the bremsstrahlung
spectrum. The bremsstrahlung spectrum N(&, T)
is distorted by absorption of photons in the target,
in any material between the target and the sample,
and in the sample itself. The electrons striking the
target may have an initial energy spread, and ener-
gy losses in the target itself will further distort
N(k, T,). Moreover, N, (%, T,) is normalized to a
unit monitor response while N(k, T,) is usually
normalized per incident electron and per taiget
atom. The monitor itself can be of any type with a
known response. M (k) for X-rays as a function of
photon energy k. That is, the photonuclear yield
equation (1) is dependent upon the particular con-
ditions of the experiment. Penfold and Leiss?)
discuss a function y(7T,), ‘‘the reduced yield func-
tion”’, which may be obtained from the experimen-
tal yield Y(T,) in an unequivocal fashion. y(T,) is
related to the ‘‘reduced cross section” s(k) by a
universal photonuclear yield equation.

" dko(R)N(k, Ty), (12)

Eth

Y(To) = fro dks(R)N(k, T,) ~ f

En

where s(%) is related to ¢(%) and in most cases can

be taken as equal to (k) to good approximation.
(For this reason the symbol s(%) will not be used
further in this paper.) Eq. (1a) is now independent
of the exact nature of the experimental ariange-
ment. Note also that the constant A4 in eq. (1) has
been incorporated into the definition of reduced
yield.

In this paper all experimental yield functions are
assumed to be transformed into reduced form.
Since this paper deals only with the mathematical
problems associated with the solution of eq. (1a)
and not with the problem of measurement of valid
photonuclear yield functions, we assume that all
experimental yields can be transformed into the
reduced form without error. This, of course, implies
that the monitor response function M (k) is known
exactly as well as other experimental factors
distorting the spectra. With reasonable care valid
reduced yield functions can be obtained from ex-
perimental data?).

2.1. NATURE OF THE SPECTRUM

The bremsstrahlung function N (%, T,) appearing
in eq. (1) has been extensively studied both experi-
mentally and theoretically?®). However, to date, its
exact form is known imperfectly, especially for
values of k=~ T, the so-called spectrum tip. In this
paper N(k, T,) will be taken as the integrated over-
angle Schiff spectrum?), an approximation to N(%,
T,) which has been used extensively in the past for
the solution of photonuclear yield functions. Distor-
tions in o(k) due to the use of an approximate spec-
trum will not be discussed for reasons given pre-
viously. These distortions have been considered by
others in the literature!) and are thought to be
minor.

In practice y(T,) is measured only at a finite
number # of energies T,;; usually at energies T,
spaced in equal intervals AT, starting from the
threshold energy E,. Thus the ith energy T, is
related to the threshold energy E, by

To=E, +idT,, i=12..,n. (2

1) A.S. Penfold and J. E. Leiss, Phys. Rev. 114 (1959) 1332.

%) D. W Anderson, A. J. Bureau, B. C. Cook, J. E. Griffin,
J. R. McGonnell and K. Nybé (submitted to Phys. Rev. Letters)

%) H. W. Koch and J. W. Motz, Rev. Mod. Phys. 31 (1959)
920.
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Similarly the ith yield point y; can be defined as
Yi = ¥(To)-

2.2. SOLUTION OF THE PHOTONUCLEAR YIELD
EQUATION

Many authors have presented methods for the
solution of the photonuclear yield equation {1a).
All such methods can be divided into two catego-
ries: (1) solution of the integral equation (1a)
directly-or (2) solution of a set of linear equations
which approximate the integral equation.

The photonuclear yield equation (la) is a Vol-
terra equation of the first kind with kernel N (%, T).
Several authors*) have given solutions, but all use
approximations to the bremsstrahlung spectrum
N{(k, T,). The approximations are in general rather
poor for k& near the tip of the spectrum (¢ ~ T).
Moreover, the yield y(T) is not known as a con-
tinuous function of T, a condition implicit in the
solution of the integral equation, but rather it is
known only at a finite set of energies T',,;. For these
reasons the solution of eq. (1a) in this paper is based
on method 2.

2. The Volterra integral equation can be replaced
by a set of linear equations if N(&, T,,) is approxi-
mated in the following way. In each interval of
photon energy, k; — AT, to k;, the spectrum
N{k, T,,)is replaced by a constant N;,. N;; depends
upon the electron energy T, and the photon energy
k;. The value of N}, is chosen such that

ks
N;jATo = f diN(k, T,,), 1e.,
;—ATo

O — T T T

1 |

50 80

10 20 30 40

PHOTON ENERGY K

Fig. 1. The Schiff integrated-over-angle bremsstrahlung spec-

trum N(k, T;). The continuous spectrum N (k, T,), as well as the

“‘step wise”’ approximation to N(k, T), N'j, are given for T,

of 20, 30 and 60 MeV and for %4 from 10 to 60 MeV. An energy
interval AT, of 1 MeV is assumed.
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each interval of the approximate spectrum has the
same number of photons as the true spectrum
N(%, T,). The bremsstrahlung spectrum N(&, T)
and this “‘step-wise” approximation to the spec-
trum is shown in fig. 1. Penfold and Leiss®) have
discussed conditions on (%) for which this approxi-
mation to N(&, T,) is valid and estimate the distor-
tions in ¢ introduced by these approximations.

In the “‘stepwise” approximation eq. (la) be-

comes
i ky
yTo) == Y f d&N;a(k)
i=1V ky—4To
i Lo 1 kj
-3 Wit [ [ am] o
=1 0 v k;~ATo
= Nijo', 1=12,...,n,
i=1
where

1 f"’
o = - o(k)dk
I ATy J - v ®)

is the average value of (%) in the interval of photon
energy betweenk; — AToand kj,and Ny; = N AT,
is the number of photons in the bremsstrahlung
spectrum in the same photon energy interval with
electron energy T,;. In matrix notation eq. (3)
becomes

y=N7g

(3a)

where ¢ is a column matrix with # rows with ele-
- . . . -
ments ¢;, y1s a column matrix with » rows with
elements y;, N is an nth order square matrix with
elements N (N, = 0 if j > 1) called the brems-
strahlung matrix. Eq. (3a) has the a solution

-

g=N1y. (3b)
The matrix N™! has been tabulated for many elec-
tron energies up to 1 GeV for various energy inter-
vals AT, for the Schiff spectrum?). Equation (3) or
its equivalent form, eq. (3a), are the basic equations

4) L. V. Spencer, Phys. Rev. 87 (1952) 196;

R. Malvano, A. Molinari and M. Omini, Supplemento Nuovo
Cimento XXIII, (1962) 253.

5} A. S. Penfold and J. E. Leiss, “‘Analysis of Photo Cross
Sections”’, Physics Research Laboratory, Univ. of Ill.,, Cham-
paign, Ill., May 1958 (unpublished).
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used in this paper. Unfortunately the solutions,
eq. (3b), oscillate violently as a function of photon
energy at energies above the giant resonance energy
if the yields are known to moderate precision. For
this reason these solutions are unacceptable
physically. Thus smoothing of some nature must
be used.

2.3. THE INTERPRETATION OF SOLUTIONS AS
TRANSFORMED YIELDS

In order to understand the validity of least struc-
ture, it is useful to consider the solution of eq. (3a)
from another viewpoint. The yield ¥ is obtained
from the cross section ¢ by the application of the

operator N to @. If an arbitrary (operator) matrix
0 acts on each side of eq. (3a), one obtains

Y*=07% =0-Ng=N*q, @

where yx is the result of applying the operator
0N = N*, the transformed spectrum N*, to¢. That
is, the transformed yield * is related to & through
N* just as ¥ is related to & through N. Experimen-
tally this implies that if one could obtain in the
laboratory a spectrum N*(k, T;) which could be
approximated by the matrix N*, using this spec-
trum one would measure a yield y*. A solution o is
obtained by setting O = N~! such that N* =
0-N = N-!.N = [, the unit matrix, i.e. 3* = &.
From this viewpoint N~! is the operator which
transforms y into another yield 3* which is equal to
the average cross section o, However other trans-
formed spectra N* than the unit matrix / may have
simple physical interpretation. For example,
¥* = N*.g could represent the average of ¢ over
several energy intervals AT ,. From this viewpoint,
the solution of eq. (3a) is no longer unique; in fact
an infinite number of physically acceptable solu-
tions to eq. (3a) are possible.

2.4. MOTIVATION OF LEAST STRUCTURE

The least structure solution of eq. (3) was moti-
vated from the following considerations:

1. All smoothing should be applied to &(k) and
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not to y(T',). If the smoothing were applied directly
to the experimental curve y(7'y), small distortions
in y may be reflected as large non-significant devia-
tions in o.

2. Since the functional form of ¢(%) is unknown,
no assumptions about the functional form of (%)
may be made. Thus all curve fitting procedures,
such as least squared adjustment of parameters, are
inappropriate.

3. Completely numerical methods should be em-
ployed. If French curves are used for smoothing, no
objective assignment can be made to the errors to
be associated with each solution. The solution is
then subjective; another observer analyzing the
same data may give a differing solution.

4. The amount of smoothing to be employed
should be non-arbitrary and determined only by
the quality of the input data. That is, such ques-
tions as whether one should use a three, five, or
seven point formula for smoothing must be ans-
wered a priori from the input data only.

5. One must be able to estimate the distortions
introduced by smoothing unequivocally. These
distortions must be small enough so that the
smoothed solutions may be identified as the cross
section or have another simple physically signifi-
cant interpretation.

3. Least Structure

For the present, consider the solutions of eq. (3a)
from viewpoint one. Since there are » inhomoge-
neous linear equations in » unknowns, there are »n
unique solutions to these equations in a strict ma-
thematical sense. However, the yields y; are ex-
perimentally determined so that they are subject
to errors, Ay;; i.e. y, = ¥; + 4y; where y, would be
the “‘true” yield with no error. y; is related to the
true cross section ¢; by

Vi = ZNiIEJ'

Thus any set of ¢;’s can be considered to be an ac-
ceptable solution to the physical problem if
Y, N.o; = ¥;; i.e., a solution is acceptable if the
calculated yield, ¥, = YN, 0;, is close to the ex-
perimental yield y, at each energy T,,.

This loose usage of ‘‘close’”” must be made precise

i=1,2...n. )
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before a mathematical analysis can be stated.
Consider for the moment that the true cross section
a(k) were known; then the true yield ¥(T,) derived
from ¢ would also be known. In statistical theory
the statistical variable y2 where

. i yl
=Zl (vy,)? ©

is frequently defined. py; is the standard deviation
in y;. The distribution function for x? is given in
many standard texts in statistics. The most proba-
ble value of y2 is # — 2, its average value is » and
its variance is 2n. x* distribution tables are readily
accessible. Note the main properties of y? are in-
dependent of the knowledge of the true cross section
and depend only on the number of points in the
photonuclear yield y, and the standard deviations

Vy;.

3.1. DEFINITION OF %*

Now define a function y2 closely related to x2
of statistics; namely

i_

i EN,-,-O',» - yi)z , (7)
i=1 Vy,) i=1

(Vyi)z

where ¢, is any set of #» numbers. That is 3% is a
function of ¢;, j =1,2,...,n. Note that x? is
related to y* in the same way aslikelihood is related
to probability. A set of o,’s will be considered an
acceptable solution to eq. (a) if

o) <m. (8)

Such sclutions ¢; are said ‘“‘to satisfy the photo-
nuclear yield equation in a x? sense’ or are said to
be ““acceptable solutions to the physical problem.”
Solutions of eq. (3a) are acceptable solutions to the
physical problem in this sense as x? is zero in this
case. However there are now an infinite set of
solutions, ¢;, all acceptable. Thus a solution is said
to be “‘close” if the 2 corresponding to this solution
is less than #, the number of data points. The
standard deviation py; in the experimental yields,
¥;, can be estimated from the counting statistics
or, preferably, by the reproducibility of the yields
at the same electron energy.

B. C. COOK

3.2. THE STRUCTURE FUNCTION §

We will attempts to select from this infinite
manifold of physical solutions the ‘‘smoothest” set
of solutions. For this purpose an auxiliary function
S(o;) called “‘the structure function” will be de-
fined. Within certain wide limits, the exact defini-
tion of S(;) is arbitrary. Several definitions of 5(s;)
have been extensively explored, namely:

=3 @ - (92)

and
n—1

Y (641 — 20, + 0;-0)% .

j=2

Syloy) = (9b)
Note no functional form for the cross sectiono; asa
function of photon energy %; is assumed; in these
definitions o; are arbitrary numbers. The least
structure solution to the bremsstrahlung yield
function (3a) is now defined as that set of o; which
minimizes the structure function (eq. 9) w1th the
restriction that ¥*> = ». The solution with y? = =
is called the solution with optimum smoothing, or
more briefly the solution; solutions with x? < #
are said to be undersmoothed and solutions with
%% > n are said to be oversmoothed.

The form of the structure function S(g;} while
arbitrary, is motivated by the following intuitive
considerations. Without restrictions imposed by
the experimental data, the least structure function
S(0;) should have value zero. Solutions of S(g;) = 0
should satisfy our intuitive concepts of a very
smooth function or a structureless function. (A
solution ¢; with many hills and valleys should have
a large value of the structure function S(g;).) The
solution of S, (¢;) = 0and S,(s,) are shownin fig.2.
The first is a constant independent of %; while the
second solution corresponding to S, = Ois a linear
function of k;. Both solutions are intuitively ac-
ceptable as a function with no structure.

However if an experimental yield curve is known,
the least structure solution will not be in general a
straight line but may have more structure, as all
acceptable solutions are constrained to satisfy the
photonuclear yield equation in a x* sense. From an
operational standpoint, the least structure solution
is quite desirable, as speaking loosely, it is the most
conservative solution to the yield equations (3a).
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Fig. 2. Least structure solutions without restraints. Solution of
Siloj) = 0 and Sg(oj) = 0 are given corresponding -to no
knowledge of the yield function. The solution o} corresponding
to S,(o;) = 0 is labeled S, and similarly for S;. The magnitude
of the S; solution is arbitrary while the slope and intercept at
the threshold energy of a line through the S, solution are both
arbitrary.

This corresponds closely to the way in which data
arenormally presented. If a peak or valley seeninan
experimentally determined curve is statistically
improbable, no claim is ordinarily made that the
effect is real. Thus a peak found in a cross section
derived from a photonuclear yield function without
smoothing should be considered sputious if another
physically acceptable solution can be found in
which the peak disappears. This, of course, does not
imply the peak is or is not valid in nature; only that
more precise data would be required to answer the
question.

3.3. THE LEAST STRUCTURE SOLUTION AS A
VARIATION PROBLEM

The mathematical procedure for finding the
solution ¢; which minimizes S(¢;) with the addi-
tional restraint that y*(c;) = # = const. is a well
known problem in the calculus of variations. S(s))
can be considered as a Lagrangian with dynamical
variables ¢;. The variables ¢; are constrained to lie
on asurface y2 = const. Using standard methods of

variational calculus, the problem can be written as
188(a;) + ox’(e;) = 0, (10)

where 2 is a Lagrangian multiplier introduced in
the conventional way. In eq. (10), the variations are
to be taken with respect to the o,’s. After some

algebraic manipulations eq. (10) can be placed in
the following simple form:

N+ 2N W) o=5  (1a)

where N is the bremsstrahlung matrix,

(ﬁ) ~!is the inverse of the transposed N matrix.

Sis a smoothing matrix the exact form of which
depends on the form of S(s),

¥ is the experimental yield,

G is the least structure solution for the cross
section,

W is a diagonal matrix with elements W, =
(1py)*.
An equation similar to (11a) has been used for the
numerical solution of integral equations pre-
viously®). Equation (11a) represents » equations in
» unknowns ¢; plus an additional unknown 4;i.e., n
nonlinear equations in # + 1 unknowns. However
(repeated here for convenience as 11b), Eq. (8) must
also be satisfied, namely
7(2 = '21 W, (Z (Nijo'j - 3’.')2> = .Zl Wiy, — 3’.')2

(11b)

Jj=1

where the weighting factors W, are given by
W, = (1/4v,)*. In (11b) solutions ¢, with ¥* = #
have optimalsmoothing, y* < #are undersmoothed
solutions, and ¥* > # are oversmoothed solutions.
S depends upon the exact form of S(s;), and a tech-
nical point about the nature of the variations do; at
the beginning and end points. (In Hamilton’s prin-
ciple of mechanics 8¢ = 0at¢ = ¢;,;;,,and t=¢;,,,;
in least structure similar restrictions may be made
if desired.) If no restrictions on the variation g are
made, the smoothing matiix S, corresponding to
Si{o;) is

1-1 0 0 0

1-2 1 0 0!

0 1-2 1 oi

5, = '00 1-2 | 01
0 - - 0 1-21 0|

0 - - - - 0 1-2 1‘
0 - - - 0 0-1 1|

) D. L. Phillips, Journal of the Association for Computing
Machinery 9 (1962) 84.
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S, =
T 1-2 1 0 0 0|
-2 5-4 1 0 - 0
1-4 6-4 1 0 0
0 1-4 6-4 1 0
1
} 0 - 0 1-4 6-4 1 0
Lo -0 1-4 6-4 1
0 -0 1-4 5-2
‘ 0 0 0 1-2 1

Thus each smoothing matrix is a matrix with
constant coefficients, independent of ;. The values
of the coefficients are determined by the functional
form of S(s,). Note §; is the second difference
operator while §, is the fourth difference operator
{except for the first and last few rows). That is,
S 7 is the second difference in ¢, and a similar
interpretation of S, holds.

A computer program in Fortran has been written
for an IBM 704 to solve the equations of least struc-
ture {eq. 11). In this code A is chosen arbitrarily as
an input parameter and eq. (11a) is solved for
fixed 1. The solutions are then substituted into
eq. (11b) and a x? is computed. This estimate of 1is
compared with the input yZ and an allowed error in
12, vx2. If the calculated x? is within 2, + 42,
the solution is consideied acceptable; otherwise by
an iterative procedure a new 1 is selected and new
solutions are obtained. The iterations are repeated
until eqs. (11a) and (11b) are both satisfied (11b in
an approximate fashion).

Once A has been obtained, the matrixM = N +
A(N)"1-W~1.5is determined uniquely as well as
y* =M !.y. The entire correlation matrix (ERM),;
= av(dodo))

=Y MM (Vy,)? (13a)

as well as the error po; in g;

Vo, = J(ERM);; = J g‘ (M, — 1)2(Vy,)*  (13b)

can be calculated. The transformed spectrum N*
(eq. 5)
N=N'=M"1LN
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is also calculated. The form of N* as a function of
photon energy £ justifies an alternative name: call
it the resolution function R.

Five smoothing requirements were made ealier.
Least structure meets all five:

1. S(o;) is a function of the 6;’s; not the y,’s.

2. The functional form of ¢ as a function of £, is
not assumed. Instead an arbitrary function of the
6;'s as parameters. S(o;), is assumed.

3. Explicit forms for the ¢;’s are given and also
for the associated errors.

4. The condition for stopping is when the solution
has optimal smoothing, i.e., y* = n.

5. The distortions can be estimated by explicit
calculations of the transformed matrix N*. For all
calculations made to date N* can be interpreted as
a resolution function R averaging ¢ over a few

energy intervals with an approximate Gaussian
function weighting.

4, Use of Trial Yield Function

To test the usefulness of least structure for the
analysis of photonuclear yield functions, two artifi-
cal cross sections, GRA and GRH, were assumed.
GRA is single Gaussians centered at 20 MeV and
GRH had two Gaussians, one centered at 20 MeV
and the second at 40 MeV. The function form of the
assumed cross sections were

kB — k\? k— k\?
a(k) =4, exp—}(——r:—l) +A2exp——-}< T 2)

(14)
where the constants were assigned the following
values:

( GRA [ GRH
4, 1.0 1.0
Ay 0.0 0.20
ky 20 MeV 20 MeV
Ry — 40 MeV
I"l 2 MeV 2 MeV
I, — 4 MeV

The cross sections are shown in fig. 3 GRA (Giant
Resonance ; Absence of Harmonic) is a single “‘giant
resonance’’ type cross section while GRH (Giant
Resonance plus Harmonic) is a gaint resonance plus
an upper resonance. Hypothetical yield curves were
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GRA

CROSS SECTION

GRH

L 1
10 20 30 40 S0
PHOTON ENERGY K {MeVv)

Fig. 3. Test cross sections. Cross section “GRA’ (giant reso-
nance with absence of harmonic) simulates g (k) with a single
resonance at 20 MeV while “GRH” simulates o (%) with a giant
resonance at 20 MeV and a harmonic at 40 MeV. The integrated
cross section of the 40 MeV resonance is 409, of that at 20 MeV.

generated by integration of each assumed cross
section weighted by the Shiff bremsstrahlung spec-
trum (eq. 1). The threshold energy was taken at
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10 MeV and a maximum electron energy T, of
60 MeV was assumed. The resulting yield function
¥(T,) is shown for each cross section in fig. 4. Yield
curve GRA is generated from cross sections GRA;
and similarly for GRH. Simulated experimental
yield functions were generated from both y(T,) by
assigning errois 4y;in y, and letting y, = ¥, + Ay,.
The electron energy T',; was taken in intervals of 1
MeV from 11 MeV to 60 MeV; i.e., a yield function
measured at 50 energies was assumed. The errors
Ay, assigned at electron energy T, were selected
randomly with a normal error distribution. For
each hypothetical yield curve y(T,), ten simulated
yields y; were generated with standard deviations
in y; 0of 1% of ¥, and ten curves were generated for
both yields with standard deviations of 0.3 %, Thus
the percentage accuracy in each yield point y; was
assumed to be a constant independent of energy.
(Experimentally activation functions are frequent-
ly measured with constant percentage accuracy
except at energies near threshold). Since the same
random numbers were used to generate the 19
data as the 0.3% data, the error 4y, assigned for
the 0.39% data is 0.3 times the error assigned for the
1% data for corresponding curves at the same

GRAI(1.0}

GRHKI.O}

YIELD

1 1

1o 20 30

40 50 &0

ELECTRON ENERGY 7, {MeV)

Fig. 4. Yield functions generated from GRA and GRH. The continuous curve is a smooth curve drawn through the yields

generated from the assumed cross sections. The points shown represent a test yield function with 19 statistical error. The

notation is as follows: GRH 1 yield function generated from cross section GRH and the first set of random numbers used to
assign errors at each point; (1.0), percentage error assumed.
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energy. Thus cross sections derived from 0.3%
yield data can be compared po'nt by point with
cross sections derived from 19, data without the
additional complications introduced by random
fluctuations if independent errors were assumed.
The points shown in fig. 4 represent a simulated
yield function with 19, error. Note the existence of
the 40 MeV resonance in GRH is clearly evident as
a change in slope near 40 MeV although 19 errors
are assumed. Simulated experimental yield func-
tions y; and the least structure solutions ¢; are
labeled by the cross section assumed, GRA or GRH,
by the set of random numbers used to select the
errors (1-10), and by the standard deviation of the
errors (0.3 or 1.0%). For example GRH 1 (1.0)
implies cross section GRH, the first set of random
numbers, and 1.09, errors.

A typical solution without smoothing is shown
for 0.39, data in fig. 5. No 40 MeV resonance was
assumed but the fluctuations in ¢; are too large to
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Figs. 10 and 11 Least structure solutions of GRH 1(1.0; and
GRH 1(0.3). The statistical errors and resolution are shown at
representative energies The resolution is the full width at half
maximum of the resolution function R determined by the least
structure analysis.
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Least structure solutions of GRH using a S, structure function.

make any statements about ¢; above 30 MeV. For
19 data the fluctuations are ten times the giant
resonance peak at 20 MeV. Least structure solutions
corresponding to yield function GRA 1 for 19, and
0.39%, data is shown in figs. 6 and 7, respectively.
The least structure solutions o; although differing
from the underlying ““true” cross section in some
respects, are quite acceptable. Unless otherwise
specified, all least structure solutions illustrated
will be for structure functions S,.

Least structure solutions for simulated yield
functions generated by GRH 7 (40 MeV resonance)
are shown in figs. 8 and 9. Ten solutions, each cor-
responding to an independent yield function are
given. Fig. 8 represents 19, data and fig. 9, 0.39%
data. The 20 and 40 MeV peaks in o, are clearly
evident in all solutions although fluctuations in ¢;
due to statistical fluctuation in the yields have not
been completely eliminated. Solutions of yield
curves GRH 1(1.0) and GRH 1(0.3) are repeated in
figs. 10 and 11 with the statistical errors at repre-
sentative energies (eq. 13b) indicated as well as the
energy resolution (full width at half maximum) im-
plicit in least structure. Least structure solutions
do not fluctuate as a function of photon energy as
the solutions at adjacent energies are correlated
This correlation in ¢; must be recognized for the
proper interpretation of the assigned error but does
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not invalidate least structure. (Solutions without
smoothing are more strongly anticorrelated than
the least structure solution is correlated). The
complete correlation matrix (ERM),; (eq. 13a) has
been calculated in a few cases but will not be re-
produced here. The correlations are found to be
large for energy intervals comparable to the resolu-
tion. The fluctuations seen in the solutions o;
shown in figs. 8 and 9 are comparable in magnitude
to the errors calculated by eq. (13b).

In fig. 12 solutions for GRH (0.3) using a S,
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structure function are presented. The similarity of
these solutions to those using S, is clear. Thus least
structure solutions are gratifyingly independent of
the particular arbitrary formulation of least struc-
ture used. In figs. 13 and 14 solutions for GRH 1
are shown with x? as a parameter for 1% and 0.3%
data. Solutions corresponding to y* < 50are under-
smoothed solutions and those corresponding to
x% > 50 are oversmoothed solutions. Again it is
found that the nature of the solutionsis not strongly
dependent upon the smoothing chosen.

x2 GRH 1(03)
/\\ )
29 X

CROSS SECTION

[

0 20 30 40 50 60
PHOTON ENERGY K (MeV)

Figs. 13 and 14. Effects of smoothing. Solution of GRH 1{1.0) and GRH (0.3) are given with 32 as a parameter. The solution
with %% = 50 corresponds to optimum smoothing, solutions with 7” < 50 are undersmoothed and solution with 72 > 50 are
oversmoothed.
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5. Validity and Interpretation of Least Structure

Solution

The validity of least structure has been unequi-
vocally justified for cross sections of the type tested
in this section by a direct comparison of the least
structure solutions to the original solution. An ob-
jection might be raised that the solution may be
completely invalid for other cross sections. How-
ever the transformed spectrum N*(eq. 5) can be
calculated for all least structure solutions without
a knowledge of the true ¢. In this way distortions in
a(k) can be estimated using the experimental data
only. In figs. 15 and 16 N*, calculated for 19, and
0.39%, input data, is shown at representative elec-
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Figs. 15and 16. Least structure resolution functions. Resolution
functions determined using GRH 1, a S, structure function, and
optimum smoothing. Each curve represents a smooth curve
through a row of R. The curves are labeled by the electron
energy T, in MeV of the yield point to which it corresponds.
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tron energies 7. Except at the highest energies
N*(k, T,) is approximately symmetrical about T
as a function of k. For | Ty-% | large, N* is small
although one to two oscillations about zero are
found. However the term, resolution function R for
the more general expression “‘transformed spec-
trum”’ is completely justified in this case. The inter-
pretation of the least structure solutions as cross
sections for the test curves is valid as transformed
yield (eq. 4) (y* = N*-&) can be interpreted as a
cross section since N* has the nature of a resolution
function. On the contrary, if N* were a drastically
distorted function of %, least structure would fail.
Thus distortions produced by least structure can be
estimated from the input data only, without an a
priori knowledge of the “‘true cross section”. The
calculated errors (eq. 13b) represent standard devia-
tions of the cross section weighted by the resolution
function R and not deviations of the least structure
solution from the true cross section.

6. Conclusion

In conclusion, least structure has been shown to
be a useful method for the solution of photonuclear
yield functions. Any distortion introduced by the
method can be estimated a posteriori so that the
validity of the solution can be tested. Errors can be
assigned to the solution. The method has been used
successfully in this laboratory for several experi-
mentally measured yield functions as well as other
test functions not described in this paper.
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