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then the conditions imply that ¢ shall vanish unless

e2

R < [Kinetic energy of the electrons].
12

It is clear, therefore, that over all that part of x, space which contributes any-
thing to the integral in (2), { must satisfy the wave equation for two electrons
in free space with no interaction. The equation (2) follows in the same way
as the equation (1) for one electron.

It appears, therefore, that the interpretation of the two-electron equation is
consistent, and further that all results of physical importance can be obtained
by using one time only, putting ¢, — ¢, in the wave equation. It would, how-
ever, be of interest to obtain a solution of the wave equation containing the
two times, so that we could see what happens in the case excluded above, when
one experiment is in the absolute future of the other, and so may be affected
by it.

The Secattering of Fast Electrons by Atomic Nucles.
By N. F. Morrt, B.A., St. John’s College, Cambridge.

(Communicated by N. Bohr, For. Mem. R.S.—Received April 25, 1929.)

Section 1.—The hypothesis that the electron has a magnetic moment was,
as is well known, first introduced to account for the duplexity phenomena of
atomic spectra. More recently, however, Dirac has succeeded in accounting
for these same phenomena by the introduction of a modified wave equation,
which conforms both to the principle of relativity and to the general trans-
formation theory. Formally, at least, on the new theory also, the electron
has a magnetic moment of eh/me, but when the electron is in an atom we
cannot observe this magnetic moment directly; we can only observe the
moment of the whole atom, or, of course, the splitting of the spectral lines,
which we may say is “ caused ”’ by this moment. The question arises, has
the freeelectron ““ really ” got a magnetic moment, a magnetic moment that
we can by any conceivable experiment observe ? The question is not so simple
as 1t might seem, because a magnetic moment ch/me can never be observed
directly, e.g., with a magnetometer; there is always an uncertainty in the
external electromagnetic field, due to the uncertainty in the position and
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velocity of the electron, and this uncertainty is greater than the effect of the
electron magnet which we are trying to observe.* Our only hope of observing
the moment of a free electron is to obtain a “ polarised ”” beam, in which all
the spin axes are pointing in the same direction, or at any rate more in one
direction than another. The obvious method of obtaining such a polarised
beam is a Stern-Gerlach experiment, but here again the Uncertainty Principle
shows that this is impossible* ; in fact, 1t appears certain that no experiment
based on the classical idea of an electron magnet can ever detect the magnetic
moment of the electron.

We are, however, unwilling to give up altogether the idea of the direction
of the spin axis of the free electron, because of the form that the solution of
the wave equation has for this case. Whether we consider an infinite plane
wave, or a wave packet, there are, in the solution, two arbitrary constants A,

<

B, which are just enough to determine a “spin’ direction. Hurther, it has
been shown by Darwint that the electromagnetic field due to a wave packet
can be separated formally into two parts, the one due to the charge and current,
and the other due to the magnetic moment of the electron, which points in a
definite direction and is determined by A, B. As we have pointed out, this
second part cannot be observed, because it is less than the uncertainty in the
first ; but nevertheless, we can associate formally a direction of the spin axis
with any given solution of the wave equation.

Now, have these constants A, B, this direction of the spin axis, any physical
meaning ¢ Suppose, for example, a wave packet were to fall on a nucleus ;
would the scattered intensity depend on the A and B of the initial wave packet ?
This can only be decided by a mathematical investigation, to which the greater
part of this paper is devoted. If the scattered intensity does not depend on
A, B, that would be very satisfactory; we should consider A and B to be
constants used in the mathematics, but with ne physical meaning, and the spin
of a free electron to be something non-existent. However, we shall find that
the scattered intensity does depend on A and B, so that the spin direction has
some meaning after all. Suppose an electron, about whose spin direction we
know nothing, falls on a nucleus and is scattered through a given angle ; we
now know that its spin axis is more likely to be in one direction than ancther.
Buppose an unpolarised beam, in which the spin axes are pointing in all
flirections at random, falls on a target and is scattered ; the scattered beam is
partly polarised ; more spin axes point in one direction than another ; and this

* Thege arguments are due to Prof. Niels Bohr, and are discussed further in an appendix.,
+ C. G. Darwin, ‘ Roy. Soc. Proe.,” A, vol. 120, p. 631 (1928).
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polarisation could be detected by letting the scattered beam fall on a second
target. Since the beam is polarised it will not be scattered in the same way
as an unpolarised beam ; actually we shall find that the scattering is asym-
metrical about the direction in which the beam falls on the second target, and
this could be detected experimentally.

In this paper we shall investigate the scattering of fast electrons by atomic
nuclei, using the wave equation of Dirac. As well as investigating the polarisa-
tion, we shall obtain a formula* for the scattering of an unpolarised beam,
which is to replace the Rutherford formula for fast electrons. In Section 2
we shall obtain certain general results for scattering by a field of force V(r).
In Section 3 we shall investigate the scattering by a Coulombian field of force,
and determine the scattering law and the polarisation to be expected. The
mathematics can be interpreted without difficulty, since the energy is an
integral of the equations of motion, and we are not troubled by transitions to
negative energy. We may emphasise once again that we do not want to know
how the spin axis is turned when the electron is deflected, so much as how the
direction of the spin axis affects the probability of the electron being scattered
in a given direction, as it is this last that will be observable experimentally.

Section 2.—We consider the scattering of an infinite plane wave by a centre
of force V(r). If we were working with Schrodinger electrons, the wave

equation would be
8w

h2

Vg (WHV)p =0, 1

and we should have to find a solution ¢, such that for large »

g~ T4 8.u(0 ), (1.1)
where I is written for exp (2mipz/h) and represents the incident wave, and 8 for
exp (2mipr/h)]r to represent the scattered wave. Then, if a beam of electrons

were to fall on a foil, say, of thickness ¢ and containing # nuclei per unit volume,
the proportion of the original beam scattered in a given solid angle will be

nt|u (0 $)[2sin 0 dOdd.
With Dirac electrons, we have, of course, four components of the wave
function, ¢,, ¥y, ¥s, P,. The wave equation is the familiar wave equation of

Dirac.}
[po + V(r)Je — 2mih (o, grad) - o5 me] & = 0, (2)

* This formula, of course, includes ““ Relativity correction ” as well as * spin correction,’
but does not include the effect of radiative force.
1 ¢ Roy. Soe. Proc.,” A, vol. 117, p. 610 (1928).
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and, as before, we want a solution representing an incident plane wave falling
on the nucleus and a scattered wave—a solution { therefore, such that, for
large r

U~ al 4 Su, (04). ()

The a, are constants, but not all arbitrary constants, for if any two are given,
the other two are known.? We set

ay = A, ay = B,
where A and B are arbitrary complex constants. Then we have

Gy = — AP/(?% 'f_ ”w)’ Ay = Bp/(??() + mc).

4
The current represented by the incident wave is equal to % [e,]2, which is pro-
A=1

portional to AA* - BB*. In the same way, the current scattered depends
on g, u, only.
To interpret our formulee, therefore, we choose A, B in such a way that

AA* | BB* =1,

Then, if nt P sin 0 d0 d¢ is the proportion of the original beam scattered in a
given solid angle, we have

P [uy (06) 12 + [y (0) 2. (4)

The constants A, B determine also the polarisation, or direction of the spin
axis, of the incident electrons. When we speak of the direction of the spin,
we shall mean the direction referred to axes with respect to which the electron
is at rest; 1t is this that will be distributed equally in all directions in an
unpolarised beam. Ify, o are the spherical polar angles of the spin direction,
theni

B .
— — =cot 4y . ¢". 5
L,& 27, ( )
In the same way, uy/us will determine the polarisation of the electrons scattered
in any direction. To determine the proportion scattered from an unpolarised

beam, we must average P of equation (4) over all values of y, .
If we find 5 and ¢, for the two cases A =1 B=0and A=0, B=1,

T Darwin, ¢ Roy. Soc. Proc.,” A, vol. 118, p. 6564 (1928).
1 Darwin, ‘ Roy. Soc. Proc.,” A, vol. 120, p. 631 (1928).
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then we can form the general solution (3) by superposition of these two. We
shall show in the next section that these two solutions are of the form

by ~ 1+ 8f(0) } 6.

bo~  Sg(0)er | '
and ’

$s ~  — Sg (0)e~H } 6.2)

Yy ~ T+ S£(0) ’ '

where f(0), g(0) are functions of 0 (not ¢) which depend on the form of V(7).
By superposition of these two, we have at once the general solution of the

form (3), with )
ug (04) = Af — Bge™,

1, (0g) = Bf ++ Age.
Hence we have
[ugl? 4 |y > = (JA[2 4 |B|2) (| f12+ [g?)
+ (fg* — f*9) (— AB¥e* 4 A*Be™™), (7)

so, if nt P sin 0 d0 d¢ is the proportion of the beam scattered in the solid angle
sin 0 d0 d¢, then we see from (4), (5) that

P=[fI®+lgl* + Dsiny sin (0 — ¢), (8)
D (0) =3 (fg* —f*9)

and ¥, o determine the direction of the spin axis of the incident electrons.

where

To obtain the number P scattered from an unpolarised beam, we must
average over all directions of the spin axis; we obtain

P=|fl2+1gl2 )

Unless, however, D (0) = 0 for the angle of scattering considered, the function
P will depend on the polarisation of the incident beam ; and if the incident
beam is unpolarised, the scattered beam will not be. We shall be able to
detect this polarisation by scattering the beam again by a second nucleus.
Before considering this double scattering in detail, it will be well to point
out an obvious trap. On the old Quantum Theory, one used to say that a
magnet, such as an electron magnet, must orientate itself either parallel or
anti-parallel to a magnetic field. Such an assumption would in our case lead
to inconsistent results. For from equation (8) we see that electrons whose
spin axes lie parallel and anti-parallel to the direction of motion are scattered
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‘in the same way as an unpolarised beam. Suppose then we always had a weak
magnetic field in the direction of motion, before and after scattering ; then the
scattering would always be normal, and the double scattering experiment would
give a null result, which is contrary to the result of the following calculation.
The fallacy is probably this, that we must not think of the axes of the electron

’ magnets as lying parallel and anti-parallel to the field, but as precessing
round it.

We shall now consider the double scattering experiment. A beam of
electrons LT falls on a target Ty and is
scattered. A second target is placed at
T, so that the electrons scattered
through an angle 0; in the plane of the
paper (for which ¢ =0) undergo a second
scattering.  We observe the number

of electrons scattered by T, at a given
Fo. 1. angle 0,. If the beam T,T, is polarised,
the second scattering will not be
symmetrical about T,T,; the number scattered in the directions T,M, T,M’
will not be the same.
Suppose we represent the initial beam LT by

{y = AT §, = BI.

We shall, of course, have to average over all spin directions later. The
direction of the spin axis of the scattered beam T,T, is determined, according
to (b), by the ratio of the amplitudes of the two components of the wave
function of the scattered beam, namely™

Af; — By, Agy -+ Bfy.
We now rotate our axes through an angle 0; so that T,T, becomes the axis of

z and we can represent the beam of electrons T,T, by

Gy = Ayl Uy = Byl
with{
Ay = (Afy — Bgy) cos 10, - (Ag + Bfy) sin 0,
B, = (Ag; -+ Bfy) cos $0; — (Af; — Byy) sin §0,.
We can now obtain the number of electrons scattered by the second target
T, in a given direction 0,4, ; we must insert these values of A;, By for A, B,

* f, is written for f (6,), ete.
1 Darwin, ¢ Roy. Soc. Proe.,” A, vol. 118, p. 654 (1928).
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in (7) and average over all directions of the spin axis of the initial beam LT,.
We are interested primarily in the asymmetry in the scattering about the line
T,T,. For given 0, 0,, therefore, but variable ¢,, a straightforward calcula-
tion shows that the number scattered per unit solid angle is proportional to

1 — S cos ¢, (10)
where

S — 9 (f19:* — fi*q1) (f295* — f2¥95)
(Fi ™+ 990™) (fafo™ + 9295")

The greatest asymmetry, therefore, will be found in the directions TM, TM’,
in the plane of the paper. In the plane through T,T, perpendicular to the
plane of the paper, the scattering s symmetrical about T, T,. It was in this
plane that asymmetry was looked for by Cox, Mcllwraith and Kurrelmeyer,]
and the asymmetry found by them must be due to some other cause.

We must now show that we can obtain solutions of the wave equation of the
form (6.1), (6.2), and obtain expressions for f and g. We shall first consider
Schrédinger electrons.§ The general solution of (1) is

2 oy Py, (cos 0) Ly (v)
where Ly, is the bounded solution of

L, 2dL 871: m k(k+1)1;
i Tl @V == |L=0 (11)

For large r, 1; has the form

Ly ~ 17t cos 2npr/h + m,0).
Remembering that

ir cos [\ .
ereost — \2—) EO (2% + 1) & Py (cos B) Jppy ()
we see that the solution of (1) of the form (2) is
)

2k -+ 1) " P (cos 0) Ly, (r)

0

=
I8

with

e¢)-—k— P (k+-~>[2“”“°+k +1]Pk(cos 6).

7'529 k=
The general solution in spherical harmonics of Dirac’s wave equation (2)

T “ Proc. Nat. Ac. Sei.,” vol. 14, p. 545 (1928).
1 Of. Faxen and Holtmark, ¢ Z. Physik,’ vol. 45, p. 307 (1927); Mott, ‘ Roy. Soc.
Proc.,” A, vol. 118, p. 542 (1928) ; Gordon, ‘ Z. Physik,’ vol. 48, p. 187 (1928).
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has been given by Darwin for the case of discrete energy values, and his
analysis is immediately applicable to our case. A set of solutions are :—

(@) b= (k+1) PG Yy = — G Pt
(B) ds=kPG_, by = Ggey By
(v) b= PGy Gg = (k + 1) G, Py
() dy=— G P Yy = Gy Py

Here P, is the ordinary Legendre coefficient Py, (cos 8) (not Darwin’s notation)

and P! is sin 6 4 Py (cos 0) €. Gy (r) is the bounded solution of the
d (cos 0)
pair of equations
2 2\ N (C I
-}-?(po—{—ic— +mc>11 %—?i—;—?(x:(). )
} (13)
il eV e W R 2
k(\p0;~0 mc)G—}«d/r—{» —G=0. |

Now, G has the asymptotic form
Gy ~ 171 cos (2npr/h - ;) (14)

Hence, in the same way as for Schrédinger electrons, we can form a solution
representing an incident wave and a scattered wave. KFrom (a) and (P) we
see that a solution with the asymptotic form (6.1) is

by = {(k + 1) ¢ Gy + ke'—5=1 Gy} (—)* Py (cos 0)

0

TMS

r (15)
% =1 EO{” R Gy n—k—1 G—-Ik«l} (““)k Phl (cos 0) ei"’, ]

and that

f(g) — __% i % %’b{(k + 1) (ezinla+kin _{_ 1) + k (ezivp—lc—1~}-kiw + 1)} Pk (cos 6) .]

G(0) = oo 3§ { — (et _ 1) | (Hnk=1THT 1)} P (cos 0) Jr
4]
(16)

In an exactly similar way from (y) and (3), we can construct a solution of the
form (6.2), with the same f and g.

There is no difficulty in justifying these processes mathematically, provided
that the series (12), (16) converge absolutely. And they do converge absclutely,
if V () >0 faster than 172, as may be seen by solving equation (11) for very
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large &, when V may be considered as a perturbation. We shall consider the
case of a Coulombian field in the next section.
Section 3.—We shall now consider the case that is of greatest interest, namely,
the scattering by an atomic nucleus with inverse square law field, such that
V (r) = Ze?]r.
We know that, for Schrédinger electrons, with neglect of relativity and spin,
the scattering obeys the Rutherford law. It is interesting to compare the
second order wave equation for Dirac electrons® with the Schrodinger equation,
and to see what are the order of the deviations to be expected from Rutherford
scattering. This second order equation is
|- <po + ggf)2 — VR 4 22 4 2
- or cr

p1 (o 7) ]‘P:Oa

where ¢p, is equal to the energy K of the electron, including the rest mass.
The order of magnitude of the various terms is best seen if we take for our
unit of length 1/2% times the de Broglie wave-length in free space, namely

h o/ v2\
- 2 262)F — ——
hf2mp = hf2m (pef —miet = o1 02> .
The wave equation then becomes
2 2 N
(Ve 14 2E LT o on) |y =0, (17)
where
_ 2rnle* _ 7L Po ¢

¢4

he  137° u':\/poz_mzcz v’

“cause”’ the

The last three terms inside the square bracket may be said to
scattering. For small velocities of the incident electron, it is clear that the
term 2po/r is much larger than the other terms, and therefore the scattering
is approximately inverse square. But for velocities comparable with the
velocity of light, p tend to unity, and so the effect of the ““spin” term, doc /3. g,
(o7), will be of the same order as the effect of the inverse square law term. For
light nuclei, « is very much smaller than unity, and therefore the * relativity ”’
term o?/r?, which is ‘‘ responsible ”’ for the fine structure of atomic spectral
lines, has only a small effect on the scattering.

We can obtain a solution of equation (17) of the form (6.1) by the method of
Bornt and Wentzel.] The method yields a solution of the form

PO oo o2 4
* Dirac, ¢ Roy. Soc. Proc.,” vol. 117, p. 610 (1928).

1 ¢ Z. Physik,’ vol. 38, p. 803 (1926).
1 ¢ Z. Physik,’ vol. 40, p. 590 (1927). We should have to use an  Abschirmungsfeld.’
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with @ representing the incident wave, and the other terms the scattered
wave. Such a method is only convenient for the evaluation of ¢ ; the author
has actually evaluated ¢ by this method, and the calculation provides a
useful check upon the subsequent work. For light nuclei, for which o is small,
this first approximation would probably be sufficient; but the interest of
(@ lies in this, that to the first order of approximation f and ¢ turn out to be
real, and there is therefore no polarisation to this order. We shall therefore
return to formula (15) and from it evaluate  as far as {@.

In our subsequent work we shall take the unit of length to be A/2np.

The equations (13) have been solved for I, and G, by Darwin, and by
Gordon* ; for continuous energy values Gordon’s solution is more suitable.
We introduce the following notation '

_ okl fmc? __ 2me?
V(EmeEE —1
p o 2me?/ v\
§ = —mm——————— = (] -
V(Bjme2)® — 1 hv e
A lic?

o =Vk* — o2, %= =

?

v 18 the classical ““ velocity ” of the particle defined by

B=me(1 —Z) . (18)

\ %/
With the usual notation for generalised hypergeometric series, we write

Do % wfe 1)
8; w)w.l+“ @9[:+2! @(@+1)£2+....

The asymptotic expansion of this function for large » is well known.f We

F (s

require the first term only ; for pure imaginary « we have
TR

Fle; psa) - F%Q—L;} (— @), WI

or ‘ ‘
Fla; p; 2) - %S%waa‘ﬁ > (19)

Jarg (— ) <n Jargz| <m J

according as the real part of — 2o - B is greater or less than zero.

* Darwin, ¢ Roy. Soc. Proe.,” A, vol. 118, p. 654 (1928); Gordon, ‘ Z. ]?hysik,’ vol, 48,

p. 11 (1928).
+ Of. for example, Gordon, ¢ Z. Physik,” vol. 48, p. 187 (1928).
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With this notation we have* for G,

— et G et e’
o = N[Np Tt Terl —fiq)]’

where
; +"_ip q i
ck=5<—§g;——-ﬂj1;—”e 2UIR(p 4 1 g 20 -+ 15 20} @) eV,
, T 1 —dq) ~Te4t ) . .
W=t P R  igs 2+ 15 2in 3y Vi
and

aley’ = — (b —1q')[(p — 4q)

and N is a normalising factor.
From formule (19) we have at once

G = @2r). &"r,

U= 3207 77,

and
G_j_qy « 71 cos (r 4 g log 2r 4 n_s—;)
with = given by ’ .
M _pq — — k— q,‘q' o mip e+ 1— @q)
p— g T(p + 1+ 19)
= B, say.

The asymptotic expansion of Gy is not quite of the form (14), differing from
it by the logarithmic term ; as has been pointed out by various authors, for
an inverse square law field the incident wave is not quite plane. We can,
however, construct the solution of the form (6.1) without difficulty. This
solution is S

o
1 M8

[2k + 1) & 4 {&By + (& + 1) B_yey} G (—)° Py (cos 0)

0

‘1’3 =1
. (21)

M8

by =1 2 [By — By 1] G (—)° Py (cos 6) &

These series converge absolutely for given r. A method previously given by
the present authorf can be used to prove that, for large r

k=0

7 % (27{: + 1) C,I{; (,,.) (__)k Plc (COS e) — eir cos 8 —ig log r (1 — coso)r
k=0

This represents the incident wave. The remaining terms represent outgoing

* Gordon, loc. cit., p. 13, equation (10). If we put Gordon’s j’ equal to our %, then his
v, is equal to our r G_j_;.
T Mott, ¢ Roy. Soc. Proc.,” A, vol. 118, p. 543,

VOL. CXXIV.—A. 2 a
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waves only. We cannot, however, obtain the form of the wave for large
by inserting the asymptotic solution (20) for ;, because the series so obtained
do not converge. They can, however, be summed as the limit of a power
series on its radius of convergence.* If we express the functions g, as the con-
tour integrals from which the asymptotic expansion is obtained, it is easy to
see that these sums do in fact give the asymptotic form of (21). The method
is the same as that used in the author’s previous paper. We see, therefore,
that (21) is a solution of the wave equation with the asymptotic form (6.1)
with

1= eir cos 8 — ig log r (1 — cos 9)’

S — pir +1g log 21'/7”’
and

f(0) = § X [kB; + (b + 1) B_y—y ()" Py (cos 0)

g(0) = 3 Z [B, — B__,1(—)" P, (cos 9),
the summation of each series being carried out as the limit of a power series on

its radius of convergence.
We can express f and ¢ in terms of series which do not contain ¢'. If we

write
o= — e T (p — ig)/T' (L + p + ig)
and
F(0) = %"5201 (=) {&Cy, + (B + 1) C e} P (cos 0),
G(0) =% 3:1 (—)* {k2C;, — (k 4 1)2 Cppq} Py (cos 0),
we obtain

= —¢F 4 G
/ R } (23)

g =[1¢’ (1 + cos B) F + (1 — cos 0) G]/sin 6

T and G are functions of 6, «2 and ¢. It has not been found possible to sum
the series in terms of known functions; we can, however, write ¢ = . and
expand F and G as power seriesin . We shall obtain the first two terms of the
expansion. o has, of course, any value from 1/137 for hydrogen up to about
3/4 for the heavy nuclei; and for fast electrons p. will be about 3, though for
slow electrons it will be greater. Our approximation ts best, therefore, for fast
electrons and for light nucles.

* Whittaker and Watson, ¢ Modern Analysis,” p. 155,
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If we refer to the series (22), and put ¢ = ¢’ and «® = 0, we obtain

F(0) = — 3 S (2 - 1) EZi}Jr cose)l
g(0)=0

This corresponds to a neglect of relativity and spin. Since g = 0 we see that

(24)

the direction of the spin axis is unchanged on collision. The series (24) occurs
in the investigation of the scattering of Schridinger electrons; it can be
summed by the method of the author’s previous paper,* the sum being

0
R cosec? — ,
cosec B)

where
. 8, T(1—ig) , . ]
=1 AT S .
R = ¢ exp [qulogsm 5 -+ (T i) + o .

The scattering is therefore classical, as it should be.

Now, « occurs in F and G only as o, so that as a first approximation we can
neglect o altogether. Let F, G, be the values of F and G to this approxima-
tion. Since we know f, and g, when ¢ = ¢’, and ¢’ does not occur in F and G,
we have at once from (23)

igF,=—R,
0

GO =R 00t2—2-
Hence

fo= <-— — 1 -+ cosec? g)R 1
) 6 . (24)

= (L _ ) R cot 2
9o ( q co 9 J

These are the first order scattering formula that we should obtain by the
Born method. The ratio of f, and g, is real; it follows that to this order
there is no polarisation. It is therefore of interest to evaluate f and ¢ to the
next power of «, q.

Expanding C,, in powers of o« we have

(=) T (k—ig)
Ck_F(1—|—k+@q)+2k2( )’“[m—]—] k7 0

-+ terms «?g, ete.

* Mott, ¢ Roy. Soc. Proc.,” vol. 118, p. 543 (1928). The result given there can be
simplified to that given above. Cf. Whittaker and Watson, p. 240.

2 ¢ 2
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Neglecting terms of the order o?¢ we obtainf
igF =1iqF,,

G =0 +o_cf wcosecZg—i].OO" cosec? ‘—]
! 2 ° 2.

whence from (23), (24) we can obtain at once formulz for f and g.
To this order, we find that f/g is not real ; we have therefore some polarisation

on a collision ; the constant that determines the polarisation is

% g 0% i) f 4
fa f*g 1 cosec 0 log cosec 3 -+ terms of order at.

To the same order

[f12+1g]?
0 a2 o 0 2@0525
=1 | ¢®cosect~ + ? £ cosec? 5 4 HX - terms of order o?
2 4 2 t sine il
9

‘We shall now return to the ordinary unit of length ; our formulee are most
conveniently expressed in terms of v, the velocity of the electron, defined by

(18). 'We have then

VA 02 0 2P 2
cosect 5 — — cosec®
-l

2 P (]l —
Af12+1gl = T o2 2
cos? 6
2
40 2nle 2 | terms of order ? , (25)
P he . 50
S ‘2
and 4 82¢ o
VA LRGP
* _ fRg — ) - 2
fq / 4 2ph < 2 > c dia: cosec O log cosec 2 (26)

The formulze (25) and (26) determine the total scattering and the polarisation
of the scattered beam. They are, of course, calculated with neglect of radiative

1 We use the formulae
a1
$ Py (cos 6) _ j ____dx____ = log <1 -+ cosec Q)
o k+1 o ~/1 — 2% cos 6 + a2 2
] 1 cosec? =
§Pk(cose)= r 1 da = 10g o
1 k 2V 1 — 2xcos 8+ a2 % 4
0 1 -+ cosec 5
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forces, which, for fast electrons, is a serious matter. An electron deflected

through 90° by a nucleus of charge Ze would, on the classical theory, lose an
amount of energy equal to *

| Rl

4

B
73 (2m + 3) dmo? -

This formula is calculated with neglect of relativity, but it shows that for
light nuclei, an electron with a velocity approaching that of light is acted on
by forces comparable with the electrostatic field of the nucleus. For heavy
nuclei, however, the radiative forces are less important, but for heavy nuclei
our approximations are less good—though there would be no difficulty in
pushing them to any degree of accuracy required. The author hopes, in a
later paper, to consider in greater detail the effect of radiative forces on the
scattering.

From (25) and (26) we can see the order of magnitude of the effect that may
be expected in the double scattering experiment considered in Section 2. In
equation (10), we suppose that both 0, and 0, are 90°; then we have approxi-
mately

P 1 —22/c?) v2/c?
3=112 x LTI vIe __/1]2)/02/ 2,
3 has a maximum when v/c = 0-764 so there is an optimum value of the
velocity of the incident electrons. With this value of v/c we have

8 = (Z/96)2,

7 being the atomic number of scattering nucleus.

For light elements, therefore, the effect is very small, and, indeed, may not
exist, since the radiative forces are so considerable. For heavy elements,
however, the effect of the radiative forces falls off inversely as the atomic
number, whereas the polarisation effect increases with Z2,and so it seems certain
that the Dirac theory of the electron does predict a polarisation on collision.
Whether the effect could be observed experimentally is more doubtful ; the
K electrons of heavy atoms have themselves velocities of the order of 0+7 ¢,
and would interfere with the nuclear scattering.

The proportion of an unpolarised beam scattered in a given solid angle is
given by (9), so that for the scattering of fast electrons (25) is to replace

Rutherford’s formula 7Z2¢*/4m2v? cosec“g . Our formula bears no resemblance

* Kramers, ¢ Phil. Mag.,” vol. 46, p. 845 (1923).
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to Darwin’s* classical relativity correction ; this is not surprising in view of
the fact that we are dealing with a case where the wave-length is long compared
to the classical distance of closest approach. There is therefore no possibility
of forming a wave packet that must follow the classical orbit.

Nothing occurs in the wave mechanics at all analogous to the spiral orbits
of the classical theory.

The formula does not agree very well with the available experimental
evidence, giving in all cases too little scattering. Chadwick and Mercier, for
instance, have investigated the scattering of g particles from Ra C byaluminium.
At angles from 10°-20° our formula gives 2/3 of the observed scattering. It
is possible that the radiative forces may be sufficient to account for this
divergence. Without a fuller investigation nothing can be said on this point.

In conclusion, the author would like to express his thanks to Prof. Niels
Bohr for the opportunity to work at his Institute, and for constant help and
discussion. v

Summary.

The scattering of a beam of fast electrons by an atomic nucleus is investigated,
using the wave equation of Dirac. A scattering formula is obtained, and it is
found that the scattered beam is polarised. A method by which this polarisa-
tion could be detected is discussed.

APPENDIX.

Suppose we wish to observe the spin of a free electron directly, with a
magnetometer. We will suppose the electron to be at a distance R from the
magnetometer, so that the order of magnitude of the magnetic field due to
the spin is

eh 1

— = 1

me R @)
Now, there may also be a magnetic field due to the motion of the electron ;
the order of magnitude of this field is

ew 1

- = 2

P T (2)
Now, by the Uncertainty Principlé, R and » cannot both be known at the same
time ; if AR, Av are the uncertainties in our knowledge of R and v, then

AR . Av > h/m. (3)
* O G. Darwin, ‘Phil. Mag..” vol. 25, p. 201 (1925).
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Now, in order that (1), the effect of the spin, shall be observable, it must be
greater than the uncertainty in (2). That is to say

h 1
7!&— . —ﬂ > Av,

Hence from (3)
AR > R.

The experiment will therefore be impossible, since the uncertainty in the
position of the electron would have to be greater than the distance of the
electron from the magnetometer ; the uncertainty in i

(1) would be greater than the field (1) that we want
to measure.

Stern Gerlach Experiment.—A beam of electrons
travels along the 2z axis with Vélocity v,in an unhomo-
geneous magnetic field H. We shall suppose that T, 2.
H, is everywhere zero, and that in the plane Oyx H,

[ —
Divection of Electrons’ Motion

is also zero. The force on the electron magnets tending to split the beam is
eh JH,
me oy

and in the plane Oyz this is the only force in y direction. However, the beam
must be of finite breadth, and since

oH,  JdH,
Y = 2
=~ (2)
it is clear that H, is only zero in the plane Oyz. In general
z oH
H, = S
2 j 5 dx
oH,
= da. by (2
-5 y @)

Electrons, therefore, travelling at a distance Az from the plane Oyz will be

subject to a force
ev, H,
c

®3)

in the direction Oy due to their motion through the field, and we see that (3)

is equal to
ev, 0H

¢ oy

This force is in different directions according as Az is positive or negative,

o A (4)
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and will therefore cause a spreading of the beam, which will mask the Stern-
Gerlach splitting, unless (4) is less than (1), ¢.e., unless

mu, Az <h. (5)
Now the uncertainty principle states that
Av, . m Az - h. (6)
That is to say, that the slit that we use to limit our beam to the dimensions of
Az will introduce an uncertainty in the velocity Awv,, given by (6). Inequality
(B) therefore leads to the inequality :
Avy, > v,
That is to say, the slit must be so narrow (of the order of the de Broglie wave-

length) that we have not got a beam at all, but a cylindrical wave emerging
from it.

Infra-Red Investigations of Molecular Structure.*—Part 1.
Apparatus and Technique.

By C. P. Svow (Keddey Fletcher-Warr Student) and A. M. Tavior
(Ramsay Memorial Research Fellow).

(Communicated by T. M. Lowry, F.R.S.—Received March 14, 1929.)

In what is by far the most exhaustive description of practical work in the
infra-red, Robertson and Foxf have deplored the lack of detail given in most

* Tt is the aim of this series of papers to extend knowledge of the structure of mole-
cules by work in the infra-red. There are three obvious lines of development. The
first is the study of the spectra of diatomic gases and the deductions which follow
according to the classical quantum theory ; this has already been done with success by
Imes (Sleator, ¢ Astrophys. J.,’ vol. 48, p. 125 (1918); Imes, ¢bid., vol. 50, p. 251 (1919))
for the hydrogen halides. Comparisons will be made of the molecular constants from
the infra-red bands with those obtained from electronic band spectra.

As a second development there is the use of the infra-red results in the light of the
newer quantum theory. Dennison’s prediction (‘ Phys. Rev.,’ vol. 81, p. 503 (1928))
of the shape of absorption bands needs confirmation by experiment ; and, it absolute
intensities of absorption bands can be measured, the wave-mechanics is ready with an
interpretation. Thirdly, the problems offered by triatomic molecules will be attempted.
—E. K. Rideal, C. P.Snow, F. I. G. Rawlins, A. M. Taylor.

- 1 ¢ Roy. Soc. Proc.,” A, vol, 120, p. 128 (1928).
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