Summary: Thickness measurements and extrapolation function for Ao

16 February 2016

FESEM measurement summary

- FESEM measurements of sibling foils for all but one of the 50 nm foils
- Statistical uncertainties
 - Variation between nominally identical images
 - Variation in repeated analysis of the same image
- Systematic uncertainties
 - FESEM resolution 1.2 nm
 - ± 4 pixel uncertainty in ends of line
 - Tilt uncertainty (up to 0.4% error)
 - Working distance error (1%)
 - 5% batch uniformity Lebow spec
 - 2% foil uniformity Lebow spec

Are these redundant?

Uncertainty calculation summary

		Au_5385_B	Au_3057_C	Au_5134_B	Au_7028_B	Au_5275_C	Au_5613_D	Au_7029_B	Au_6809_B	
	nominal thickness (nm)	1000	870	750	625	500	355	225	50	
	mean thickness (all data, nm)	943.7	836.8	774.6	561.2	482.0	389.4	215.2	52.0	
Stat.	Stdev, nom. identical data (nm)	29.0	7.1	9.1	8.0	9.7	4.5	1.9	2.3	
	stdev image reanalysis (nm)	22.5	7.7	9.4	7.5	4.0	2.7	1.8	2.1	
Syst.	Image analysis: ± 4 Pixel	20.0	8.0	10.0	8.0	8.0	8.0	2.6	2.6	
	Resolution (1.2 nm inherent)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	
	Tilt (0.4%)	4.6	4.2	3.9	2.8	2.5	1.9	1.1	0.3	
	Focus (1%)	9.4	8.4	7.7	5.6	4.8	3.9	2.2	0.5	
	Different spots (Lebow: 2%)	18.9	16.7	15.5	11.2	9.6	7.8	4.3	1.0]
	Sibling difference (Lebow:5%)	47.2	41.8	38.7	28.1	24.1	19.5	10.8	2.6	ŀ
Totals									•	J
	stat uncertainty (nm)	36.7	10.5	13.1	11.0	10.5	5.2	2.6	3.1	
	syst uncertainty (nm)	55.6	46.7	43.8	31.9	27.7	22.9	12.2	4.1	
	total uncertainty (nm)	66.6	47.9	45.7	33.7	29.6	23.5	12.5	5.1	

Are these redundant?

Fitting function

- No consensus on the ideal function for fitting data and extrapolating to zero foil thickness asymmetry value (Dunning and Gay 1992)
- Pade approximants (rational fractions) are excellent for extrapolating
- Consider Pade approximant approach to investigate extrapolation to zero thickness, determine uncertainty due to model dependence of Ao value

Pade approximates

In <u>mathematics</u> a **Padé approximant** is the "best" approximation of a function by a <u>rational function</u> of given order.

Given a function f and two <u>integers</u> $m \ge 0$ and $n \ge 1$, the *Padé* approximant of order [m/n] is the rational function

$$y = \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_2 x^2 + b_1 x + b_0},$$

Taylor series expansions are one example of Pade' (Pade (1,0), Pade (2,0), Pade(3,0), but do not converge as quickly

The typical fitting function
$$A = \frac{Ao}{1+\gamma T}$$
 is also Pade' (0,1)

Pade approximants and traditional fitting functions

The Pade orders tested were the following: (higher orders were examined and not needed)

- Pade (1,0): A= a₀+a₁T
- Pade (2,0): A= a₀+ a₁T+a₂T²
- Pade (3,0): $A = a_0 + a_1 T + a_2 T^2 + a_3 T^3$
- Pade (0,1): A=1/(1+b₁T)
- Pade (0,2): A=1/(1+b₁T+b₂T²)
- Pade (1,1): (a₀+a₁T)/(1+b₁T)
- Pade(1,2): A= a₀+a₁T /(1+b₁T+b₂T²)
- Pade (2,1): A= (a₀+ a₁T+a₂T²) /(1+b₁T)

Functions traditionally used for extrapolation (ref Dunning and Gay review 1992)

note - many are actually covered in the Pade formulation above

- A=a+bT (Pade (1,0))
- A=a/(1+bT) (Pade (0,1))
- 1/A=a+bT (equivalent to Pade (0,1))
- 1/VA=a+bT (equivalent to Pade (0,2))
- In(A)=a+bT
- A=a+be^{cT}
- Not covered by Pade unless you consider the Taylor expansion of In or exp functions

F testing

- The goodness of a fit is typically found by looking at reduced χ^2 or reduced R², which show how far the fit is from the data
- It is possible to overfit functions looking only at these "goodness of fit" tests
- An "F-test" can be used to see, to a given degree of confidence, if adding the next order term in an expansion is justified. If the F-test fails, there is a n% chance that the term isn't needed

Frederick James, Statistical methods in experimental physics 2nd ed.

distributed as a Fis not justified.	her–Si	nedecor	F(1, 1)	N					
not justified.				1 v —	j-1) varia	ble if	the j^{t}	h deo
From the tabulato								5	ace
110m the tabulated	d value	e of the	e F dis	strib	ution	one ca	n thor		
ription in Table 10 2	1					one ca	ar ther	i give	the I
Alphon in rabie 10.2									
Table 10.2. M	aximun	n degree	needed	in p	olynom	ial app	roximat	ion	
Table 10.2. M	aximun	n degree	needed	in p	olynom	ial app	roximat	ion.	
Table 10.2. M $N - j - 1$	aximun 2	n degree 3	needed	in p	olynom 8	ial app 12	roximat	tion.	120
Table 10.2. M $N - j - 1$ Reject j^{th} order to 95% confidence level if F	aximun 2	n degree 3	needed	in p	olynom 8	ial app 12	roximat 20	ion. 60	120

Asymmetry vs. Thickness

Pade(n,m) orders: Asy vs. Thick

Pade(n,m)	intercept	dA	R ²	red. χ²	Ftest
(1,0)	43.8025	0.1169	0.991	1.44	worst red. χ^2
(2,0)	44.0176	0.1018	0.997	0.679	10.01
(3,0)	44.1777	0.128	0.997	0.546	2.70 (rej F test)
(0,1)	44.0382	0.0786	0.997	0.634	11.23
(0,2)	44.0484	0.1057	0.997	0.737	0.0185 (rej ftest)
(1,1)	44.049	0.1061	0.997	0.737	9.67
(1,2)	44. 0295	0.0986	0.997	0.870	0.083 (rej. Ftest)
(2,1)	44.043	4.014	0.998	0.6104	2.24 (rej. Ftest)

Run 1 data, -0.5 σ to +2.0 σ , may still require error bar adjustment

Potential fits: not statistically rejected

Pade(n,m)	Asym(%)	dA	red. X²(dof)	
(1,0)	43.8025	0.1169	1.44 (9)	Linear -
(2,0)	44.0176	0.1018	.679 (8)	
(0,1)	44.0382	0.0786	.634 (8)	Normal fit
(1,1)	44.049	0.1061	.737 (7)	
averaged	44.0352	~0.1		Additional uncertainty due to model

Zero thickness extrapolation largely independent of fit function used, assuming statistically reasonable fits

Run 1 fits: Asy vs. Thick

Pade(n,m) or fn	intercept	dA	R ²	red. χ²	d.o.f.	Ftest
(1,0)	43.8025	0.1169	0.991	1.28	9	
(2,0)	44.0176	0.1018	0.997	0.594	8	11.45
(0,1)	44.0382	0.0786	0.997	.554	8	11.23
(1,1)	44.049	0.1061	0.997	0.737	7	9.67
ln(A)=a+bT	43.9917	0.058*	0.994	0.865	9	n/a
A=a+be^(cT)	44.0837	0.087*	0.996	0.669	8	n/a

Run 2 fits: Asy vs. Thick

Pade(n,m) or fn	intercept	dA	R ²	red. χ²	d.o.f.	Ftest
(1,0)	43.8437	0.1475	.984	2.28	9	
(2,0)	44.1131	0.125	.993	1.01	8	12.21
(0,1)	44.0759	0.102	.994	1.04	8	11.61
(1,1)	44.1735	0.132	.993	1.19	7	9.67
ln(A)=a+bT	44.0562	0.0726*	.984	1.77	9	n/a (not nested)
A=a+be^(cT)	44.22	0.049*	0.991	1.16	8	n/a

*Uncertainties for In and exp functions need to be examined

All viable Pade approximants + In, exp Run 1

Frequency of Ao for various fits

Conclusions

- Unless we can rule out the other functions, we should be adding an uncertainty to our extrapolate Ao due to model uncertainty
- The uncertainty due to model dependence is small, ~0.25%
- Some refinement still needed for which are the viable fits to include in this uncertainty
- Is there a legitimate way to eliminate the Pade(1,0)=linear fit that looks bad, is outlier?

Still to do

- Verify and propogate best estimate at thickness uncertainty through these fits and Daniel's root fits
- Do we get significant improvements in uncertainty with Asym vs. rate rather than Asym vs. thickness?