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Abstract. Previous discussions of skew-quadrupole channels for emittance
cooling have lacked a clear prescription of how to design a specific configuration.
We present simple formulae that can be used to design such a channel for a beam
entering at a waist. A nominal design is presented for a 120 kV, 2A electron beam
that requires 433 G of axial field at the cathode and three skew-quadrupoles with
reasonable field gradients in a 10 cm long region. This design leads to a final
emittance ratio of nearly three hundred.
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1. Introduction

It has been shown theoretically [1]–[3] and partially verified experimentally [4] that three
skew-quadrupoles can transform a round electron beam with angular momentum into a sheet
beam with a large aspect ratio and a large emittance ratio, while preserving the product of
the transverse emittances. This conversion process is of interest for future linear–collider
applications, where asymmetric beams can lead to higher luminosities, and for low-energy,
high-frequency microwave sources that use sheet electron beams.

Sheet beams intended for miniaturized high-power rf sources at 100 GHz and higher
frequencies are typically emittance-dominated in the thin dimension and space–charge-
dominated in the wide dimension. Beam emmittances from thermal and nonlinear focusing
effects in conventional electron gun technology have been adequate for previous experiments
done at 100 GHz [5]–[7], but are approaching the stability limit for both periodic permanent-
magnet and wiggler-focusing configurations [8, 9]. These beam emittances are not adequate
for higher frequencies such as 200–300 GHz. Lowering the beam current or cooling the beam
emittance (in the thin plane) is necessary for useful production of rf at these higher frequencies.
The emittance-transfer mechanism studied in [1]–[4] is very attractive for this type of high-power,
high-frequency source. Because the wide dimension is space–charge limited, it can absorb a
significant increase in emittance without degradation to its transport.

The cooling scheme begins by immersing the cathode in a solenoid field, which provides
canonical angular momentum to the beam. When the beam exits the solenoid, the beam begins
to rotate, which leads to an effective emittance growth. Three skew quadrupoles are then used to
eliminate this growth (so the product of the final horizontal and vertical emittances is the same as
the product of the beam’s intrinsic emittances), while making one emittance much smaller than
the other. Skew quadrupoles are rotated at a 45◦ angle from the nominal vertical and horizontal
axes and have forces as shown in figure 1.

The horizontal force on a particle is proportional only to its vertical displacement, and the
vertical force is proportional to its horizontal displacement. Let us consider the case of minimizing
the beam’s horizontal emittance. The strength of the first skew-quadrupole is set to nearly stop
the horizontal rotation, but it adds to the vertical rotation, making the beam form a diagonal shape
as it drifts to the second skew-quadrupole. Because the beam shape is no longer round at this
position, the second quadrupole changes the beam’s angular momentum, forcing the diagonally
oriented beam to rotate towards the vertical axis. The final skew-quadrupole is located where
the diagonal beam rotation reached the vertical axis, and its strength is set to stop the particles’
horizontal motion (eliminating the angular momentum), leaving only vertical motion roughly
proportional to vertical position. This process will be shown later in detail in section 3.

Using unique properties of symplectic transformations, Kim [3] derived the maximum ratio
of the final emittances to be

εlarger

εsmaller
≈

(
2L

εintrinsic

)2

, (1)

where εintrinsic is the beam’s intrinsic emittance (without angular momentum) and L is the
quadrature emittance contribution of the canonical angular momentum,

L = eBcathR
2
cath

16γβcm
, (2)
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Figure 1. Force orientation of a skew-quadrupole.

under the limit L � εintrinsic, where γ and β are the beam’s relativistic mass factor and normalized
relativistic velocity respectively, e is the electronic charge, m is the electronic mass, c is the
speed of light, Bcath is the axial magnetic field at the cathode and Rcath is the radius of the beam’s
cathode. This maximum ratio is reached whenever the ensemble-averaged correlations 〈xy′〉 and
〈x′y〉 are made to vanish, independent of the specific design of the entire channel. Kim also
derived three scalar equations that, when satisfied, remove these cross-correlations from a round
beam that possesses angular momentum. He suggested using three quadrupole strengths as the
three parameters to satisfy these conditions (with drift lengths acting as free parameters). We
alternatively choose two quadrupole strengths and cathode axial field as our three parameters, as
first explored by Burov et al [10]. Additionally, the phase advances of the two transverse motions
must differ by 90◦ [1, 2] for the case of an arbitrary initial beam.

The required transfer matrix for the emittance conversion scheme does not depend on the
intrinsic beam emittance, so the zero-emittance case can be analysed and applied to the general
situation. This fact greatly simplifies the analysis, since the beam size and divergence of the
beam vanishes when the intrinsic emittance is zero. The next section shows that, for a beam
initially at a waist, setting the final horizontal size and divergence to zero dictates values for
three free parameters.A beam with nonzero intrinsic emittance, evolved through the same cooling
channel, will possess a product of its horizontal and vertical emittances equal to the product of
the original intrinsic emittances, as desired. It should be pointed out that space–charge forces
deform a beam lacking cylindrical symmetry, so the correlations 〈xy′〉 and 〈x′y〉 are no longer
forced to vanish for a beam with nonzero current. However, this effect is small for the case
considered.

The cooling procedure is straight forward to describe qualitatively, but a simple procedure
for specifying the quadrupole attributes (location and strength) has eluded previous analyses.
The following section presents such formulae to generate a channel under some convenient
assumptions. In particular, we take the case where the quadrupoles are equally spaced and the
focal length of the centre one is twice the distance between the quadrupoles. We use the thin-
lens approximation for the quadrupoles in order to find simple expressions for the quadrupole
focusing strengths. These formulae are then used to design a channel for a 120 keV, 2A electron
beam suitable for a 300 GHz travelling wave tube amplifier. Finally, we show results of a particle-
pushing code whose calculated emittance ratio for this channel very closely obeys equation (1).
The simulation results also confirm that similar results are reached with quadrupoles of nonzero
length.
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2. Design formulae

We assume the beam is initially round and at a waist where it enters the first quadrupole.
A general particle has initial coordinates (x0, y0) and initial divergence (−Ay0, Ax0), where
the constant A is related to the axial field on the cathode by

A = e

2γβmc
Bcath

(
Rcath

Rbeam

)2

, (3)

where the last factor is the squared ratio of the beam size at the cathode to the beam size
at the quadrupole. The initial divergence corresponds to a beam waist with nonzero angular
momentum but without any intrinsic emittance. This waist condition is easily generated with
a solenoid surrounding the cathode; the beam inside the solenoid possesses canonical angular
momentum, and when the beam emerges from the solenoid, it begins to rotate.

Immediately after the third quadrupole, the horizontal position and divergence of the particle
should be zero. While either of these conditions would satisfy the goal of zero horizontal
emittance, both are necessary to ensure that the two correlations described in the previous
section vanish. Surprisingly, these requirements lead to fairly simple design requirements. For
this analysis, we assume the quadrupoles have zero length and we ignore space–charge forces.

We let the change in particle divergence through the first quadrupole be given by
(�x′, �y′)Q1 = (Cy0, Cx0), where C is related to the quadrupole field length integral by

C = e

γβmc

∫
B′

Q1 dl, (4)

where B′
Q1 is the field gradient of the first quadrupole and the integral covers its axial length.

After the first quadrupole, the beam position is still (x0, y0) and the beam divergence is given by
(δy0, αx0), such that

A = α − δ

2
and C = α + δ

2
. (5)

After a drift of length L to the second quadrupole, the particle’s position is given by:

(x2, y2) = (x0 + δLy0, y0 + αLx0). (6)

The particle’s divergence is still (δy0, Ax0) before the quadrupole. The particle’s divergence is
altered by (�x′, �y′)Q2 = (−ηy2, −ηx2) due to the second quadrupole, resulting in a divergence:

(x′
2, y

′
2) = [δy0 − η(y0 + αLx0), αx0 − η(x0 + δLy0)], (7)

where η = e

γβmc

∫
B′

Q2 dl.A length M from the second quadrupole to the third leads to the position:

(x3, y3) = [x0 + δLy0 + M(δy0 − η(y0 + αLx0)), y0 + αLx0 + M(αx0 − η(x0 + δLy0))]. (8)

The horizontal divergence, being δy0 − η(y0 + αLx0) before the third quadrupole and changed
by �x′ = ζy3, becomes

x′
3 = δy0 − η(y0 + αLx0) + ζ[y0 + αLx0 + M(αx0 − η(x0 + δLy0))], (9)
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where ζ = e

γβmc

∫
B′

Q3 dl. Denoting the final particle horizontal position and divergence by:

xf = x0 + δLy0 + M[δy0 − η(y0 + αLx0)]

x′
f = δy0 − η(y0 + αLx0) + ζ[y0 + αLx0 + M(ax0 − η(x0 + δLy0))],

(10)

we set both xf and x′
f to zero, for all initial values of x0 and y0. Setting xf = 0 provides the

constraints

1 = MLαη (11)

and

Mη = δ(L + M). (12)

Setting x′
f = 0 additionally sets

η = ζ + δ(1 − MLζη). (13)

The fourth constraint, requiring the coefficient of y0 in the x′
f = 0 equation to vanish, is

automatically satisfied by the other three constraints and is consistent with previous analyses
[1]–[3], [10], which observed that only three parameters are required to remove the beam’s
cross-correlations, in turn leading to zero horizontal beam size and divergence when the intrinsic
beam emittance is neglected.

For convenience, we set the drift lengths L and M equal, and the constraints become:

1 = L2αη, δ = η/2, ζ = η

2 − L2η2
. (14)

These three equations fully define the quadrupole channel, and lead to an infinite number of
possible solutions. In general, the quadrupoles should not overfocus the beam; specifically, the
focal length of the quadrupoles ought to be greater than their separation, so letting Lη = 1/2
further refines our constraints. The other parameters are now fixed, and the complete solution
for the quadrupole strengths and axial field on the cathode is:

η = 1/(2L), δ = η/2, α = 4η, ζ = 4η/7, (15)

where the actual quadrupole strengths and the axial field on the cathode are found using equations
(3)–(5).

Previous analyses solved for a transfer matrix from just before the termination of the solenoid
to the final quadrupole. The 2 × 2 transfer matrices of the two transverse dimensions differ by
a 90◦ phase shift [1, 10]. The total transfer matrix is of the form

T =




0 χ(c − s)/2 0 χ(c + s)/2

0 −(c + s)/2 0 (c − s)/2

c − s χ(c + s)/2 −(c + s) χ(c − s)/2

−(c + s)/χ (c − s)/2 (s − c)/χ −(c + s)/2


 , (16)
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where c = cos µ, s = sin µ, χ = 1/A from equation (3), and µ is the single free parameter.
Explicit calculation of the transfer matrix of the solution presented here is surprisingly not of
this form. This is due to our initial beam structure—we start with a beam at a waist, which provides
an alternative degree of freedom in the overall channel design (which allows us to find solutions
that do not require the 90◦ phase shift). This leads to having both M/L and the product Lη as free
parameters. Because of this freedom, these solutions encompass the more constrained solution
described by equation (16), plus other specific cooling designs. The additional requirement of
having a beam waist at the location of the first quadrupole can be met with a single solenoid, so
the solutions in equations (11)–(13) can also be considered as a subset of the class of solutions
with four degrees of freedom.

3. Specific solution for a 120 keV electron beam

Using equations (15) with 5 cm drifts between the quadrupoles, we find:

η = 10 m−1, δ = 5 m−1, α = 40 m−1, γ = 5.714 m−1,

A = 17.5 m−1, C = 22.5 m−1,
(17)

for a 120 keV beam, which lead to a field of 433 G on the cathode and field integrals of 278 G
for the first quadrupole, 124 G for the second quadrupole, and 70.7 G for the third quadrupole.

We use the particle-pushing code PUSHER [8] to simulate the effect of this channel, starting
with a beam that has a 5 mm radius. The quadrupoles in this simulation are assumed to be 0.4 mm
long with a cosine-like axial field pattern. The initial simulation is for a beam with zero current
and initial emittance in order to match the analysis.

For this numerical calculation, we use the normalized rms emittance given by:

εx,norm = βγ
√

〈x2〉〈x′2〉 − 〈xx′〉2. (18)

We use this approach to design an emittance-cooling channel for a 120 keV, 2A beam with an
intrinsic emittance of 6 mm mrad. This beam is adequate for a 100 GHz travelling wave tube
amplifier [5, 6], but the emittance is about a factor of three too large for a 300 GHz amplifier. Our
goal is to simulate a cooling channel leading to a final horizontal emittance less than 1 mm mrad.
For the channel parameters above, the emittance contribution from the axial magnetic field
at the cathode is about L = 76 mm mrad. According to equation (1), the final emittance ratio
will be about 640 and the final horizontal emittance approximately 0.25 mm mrad. This value is
significantly better than the necessary emittance for a 300 GHz amplifier.

The results from PUSHER simulations agree well with the theory, predicting a final
emittance ratio of about 660 and a final horizontal emittance of about 0.23 mm mrad. The
simulated geometry is shown in figure 2. An iron pole piece at the end of the solenoid clamps
the axial magnetic field and the solenoid length is adjusted to ensure a waist that the location of
the first skew-quadrupole, while providing the right amount of axial field at the cathode. Figure
3 shows the beam shape and velocities just before and after the first quadrupole, and figures
4 and 5 show the same for the second and third quadrupoles. These results were obtained for
the parameters given in equation (15), and they show remarkable agreement with the theoretical
premise of a vanishing final horizontal emittance.
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Figure 2. Schematic of an electron gun immersed in an axial magnetic field
followed by three skew-quadrupoles. The beam profiles just before and after the
first quadrupole are shown in figure 3, the second quadrupole in figure 4, and the
third quadrupole in figure 5.

(a) (b)

Figure 3. Beam shape and particle velocities just before (a) and just after (b) the
first quadrupole.

Figure 3 confirms that the first quadrupole removes most of the horizontal motion. However,
the small amount remaining is crucial to forcing xf = 0.

Figure 4 shows that the second quadrupole actually increases the beam’s angular momentum,
and it sets the proper beam condition at the upcoming beam waist at the location of the final
quadrupole.

Inspection of figure 5 shows that the beam’s angular momentum has decreased to nearly zero,
since the third quadrupole can put torque on the vertically aligned beam to stop its horizontal
motion. A small amount of horizontal velocity remains (enlarged by the expanded horizontal
scale), which leads to a spreading at the extreme ends of the distribution. Due to the finite size of
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(a) (b)

Figure 4. Beam shape and particle velocities just before (a) and just after (b) the
second quadrupole.

(a) (b)

Figure 5. Beam shape and particle velocities just before (a) and just after (b) the
third quadrupole. The horizontal axis is significantly enhanced from the previous
figures.

the quadrupoles, the axial locations of the beam distribution that are plotted in figure 5 are slightly
shifted to best show the evolution of the distribution. Figure 5(a) is 1.2 mm before the centre
of the third quadrupole with the quadrupole turned off, and figure 5(b) is 0.8 mm after the
centre of the third quadrupole (0.6 mm after its physical end). The small correlation that still exists
after the third quadrupole (most likely due to nonlinearities in the transport from longitudinal and
transverse coupling in the motion, possibly resolution issues with the magnetic field or the finite
quadrupole lengths) corresponds to a very small emittance and beam width. In an experiment,
a minor adjustment to the third quadrupole strength can compensate for any residual angular
momentum.
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Table 1. Emittances and beam sizes for specific simulation cases.

Input Horizontal Vertical Horizontal Vertical Emittance
parameters emittance emittance beam size (m) beam size (m) ratio

(mm mrad) (mm mrad)

0A, 0 mm mrad 2.2 × 10−4 152 0.32 × 10−4 9.13 × 10−3 –
2A, 0 mm mrad 0.117 153 2.56 × 10−4 9.27 × 10−3 –
0A, 6 mm mrad 0.233 153 3.54 × 10−4 9.14 × 10−3 657
2A, 6 mm mrad 0.541 153 4.61 × 10−4 11.53 × 10−3 283
0A, 60 mm mrad 22.6 175 35.2 × 10−4 9.77 × 10−3 7.74

Table 2. Variation due to beam current and emittance for 1 cm long quadrupoles.

Input Horizontal Vertical Horizontal Vertical Emittance
parameters emittance emittance beam size (m) beam size (m) ratio

(mm mrad) (mm mrad)

0A, 0 mm mrad 9.7 × 10−4 152 0.25 × 10−4 9.52 × 10−3 –
0A, 6 mm mrad 0.267 153 3.67 × 10−4 9.53 × 10−3 573
2A, 6 mm mrad 0.772 153 4.62 × 10−4 9.69 × 10−3 198

Using the channel optics described in the previous discussion, we summarize our simula-
tion results using nonzero beam current and emittances in table 1. The first case, without
space–charge or emittance, is an unrealistic simulation that nearly gives the infinite ratio predicted
by equation (1). A 2A beam with space charge shows a significant increase in the final horizontal
emittance, though this is not included in the theoretical analysis.

The next two cases include 6 mm mrad of intrinsic emittance with and without space charge.
Comparing the two, the horizontal emittance degrades by about a factor of two, but it is still
outstanding for future high-frequency amplifier applications. The final example employs a large
intrinsic emittance, 60 mm mrad, but its results again approach the theoretical estimate even
though the intrinsic emittance is nearly 80% of the emittance contribution from the beam’s
canonical angular momentum.

A more realistic quadrupole length of 1 cm was used for the results presented in table 2.
Due to this, a small degradation in cooling performance can be observed. However, the resulting
emittances and ratios are still quite impressive, and we believe that experimentally modifying
the quadrupole strengths will recover some of the degraded performance.
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