Spot-Size Reduction

> 4/5/2017

UVa Results - Reducing Spot-size Helps

- $\mathrm{w}_{\mathrm{pc}}=1.35 \mathrm{mmX}, 1.46 \mathrm{mmY}, \mathrm{w}_{\mathrm{qpd}}=1.43 \mathrm{mmX}, 1.58 \mathrm{mmY}$
-4θ terms \sim 1.3-1.5umX, 0.76-1.1umY
- $\mathrm{w}_{\mathrm{pc}}{ }^{\sim} 0.324 \mathrm{mmX}, 0.341 \mathrm{mmY}, \mathrm{w}_{\mathrm{qpd}}=0.886 \mathrm{mmX}, 0.891 \mathrm{mmY} \sim 7 \mathrm{x}$ -4θ terms (NOT realigned) ~ 2.2-3.1umX, 2.5-4.3umY
-4θ terms(aligned) ~ 0.29-0.27umX,0.24um-0.09umY ~5.2x
- $\mathrm{w}_{\mathrm{pc}}=0.324 \mathrm{mmX}, 0.341 \mathrm{mmY}, \mathrm{w}_{\mathrm{qpd}}=2.06 \mathrm{mmX}, 1.907 \mathrm{mmY} \sim 3 \mathrm{x}$ -4θ terms $\sim 0.47-0.54 u m X, 0.33-0.36 u m Y \sim 2.7 x$
4θ terms ~ wpc * wqpd

3 scenarios (Injector Table)

1. Now: $w_{p c}=1.9 \mathrm{~mm}, w_{c}=1.1 \mathrm{~mm}$
2. Upstream 1 m lens $(z=-1.29 \mathrm{~m}): w_{\mathrm{pc}}=0.53 \mathrm{~mm}, w_{\mathrm{c}}=0.85 \mathrm{~mm}$
3. Up+Downstream $(z=0.81) 1 \mathrm{~m}$ lenses: $\mathrm{w}_{\mathrm{pc}}=0.53, \mathrm{w}_{\mathrm{c}}=1.1 \mathrm{~mm}$
4. A 1 m lens 0.2 m after the Pockels cell, would keep the wpc the same $=1.9 \mathrm{~mm}$ and enlarge the wc from 1.1 mm to 2.05 mm (so 4 sigma~4mm).

Scenario \#2 has a ~20\% spot size reduction on the cathode Scenario \#3 goes through a focus after the vacuum window

Layout (Conceptual)

Different

Halls
Beams

- May have Upstream Lens before or after combiner (either affecting all Halls or affecting only Hall A)
- Upstream lens permanently installed
- May keep downstream lens installed or not (20% spot size difference on cathode)

Predictions

(not including vacuum window or 2θ terms)

- NOW: model UVa KD*P, Jlab spotsizes
- ~100nm offsets, $10-40 \mathrm{~nm} 4 \theta$ terms
- Measure bpm0I01 first after cathode 25-45nm 4 4
- 1m lens upstream: model UVa KD*P, Jlab predicted spotsizes
- 20-30nm offsets, $<10 \mathrm{~nm} 4 \theta$ terms
- +Photocathode Rotation
- (<5nm offsets \& 4θ terms prediction)
- Really beneficial for the vacuum window birefringence gradient which is not modeled here...but is important

Resources Needed

- $2 \mathrm{f}=1 \mathrm{~m}$ lenses (we have 2 at UVa , but for permanent Jlab installation, so maybe order lenses for the week after next)
- 24 -axis lens mounts (pitch,yaw, X, Y)
- Control over the helicity board
- $3-5 \mathrm{~mW}$ of Hall A laser for alignment (CW or pulsed, either is fine)
- HallA Electron beam >20uA (70uA is good) going up to at least FC1
- (Conditions of injector beamline should be as if accelerator were going to run 70 uA of 1 GeV beam, or 150 uA of 2 GeV beam)
- Walk-through of injector laser for Amali (M)
- Someone in control room who can change beam current, turn on/off autogaining on bpms (M morn., T even., W morn., W even., Th morn., Fri morn.)
- Electron beam (M morn, M aft., T even., W, Th 3x, F)
- Access to injector laser room (M even., T, W aft.,Th 3x, F morn.)
- Someone who can get the laser to give us 3-5mW of Hall A laser beam(M even., T, W aft.,Th 3x, F morn.)
- Someone who can help us rotate the photocathode Angle (Th 3x, F morn)

Plan

- Day1 - benchmarking, bpm/bcm calibration, RHWP scans (\#1), QPD laser setup
- Day2 - QPD setup, camera measurements, lens alignment, PC realignment, maybe RHWP scans(\#2)
- Day3 - bpm/bcm calibration, RHWP scans(\#2), downstream lens insertion, camera measurements, bpm/bcm calibration, RHWP scans(\#3)
- Day4 - Photocathode rotation, bpm/bcm calibration, RHWP scan (repeat 3X)
- Day5 - Final photocathode angle selection, bpm/bcm calibration, RHWP scan (final)

Day1

- Day1 benchmarking
- Morning - bcm/bpm calibration
- Need someone in control room who can change beam current, turn on/off autogaining on bpms
- HallA Electron beam >20uA (70uA is good) going up to at least FC1
- BCM/BPM calibration scan - 5uA steps of current up to max current, auto gaining on injector bpms off
- Autogaining of injector bpms back on
- Afternoon - RHWP scans
- 4 RHWP scans (IHWP in/out PITA 0/ PITA non-zero) -2 hours
- Tweak Pockels cell translation - 1 hour
- Repeat 4 RHWP scans (IHWP in/out PITA 0/ PITA non-zero) - 2 hours
- Evening -laser QPD setup
- Need Access to injector laser room
- Need someone who can get the laser to give us 3-5mW of Hall A laser beam
- Setup pick off to QPD

Day 2

- Day 2 upstream lens insertion and PC re-alignment
- Morning - QPD setup, camera measurements, lens alignment
- Need Access to injector laser room
- Need someone who can get the laser to give us 3-5mW of Hall A laser beam
- $3-5 \mathrm{~mW}$ Hall A laser (CW or pulsed, either is fine)
- Finish Setup of QPD pickoff / calibration
- CHECK PC alignment with no analyzer (steering) and Aq in S2 (do PITA scan to make sure in S2)
- Get spiricon measure of spot size at cathode
- Repeat measure of spot size at pockels cell (will bring our own spiricon for this)
- Insert 1m lens upstream of Pockels Cell at predetermined z-position z=...
- measure of spot size at pockels cell (will bring our own spiricon for this)
- Measure divergence of laser at Pockels cell
- Measure spiricon spot size at cathode
- Measure spot size at vacuum window(if possible)
- Measure spot size at QPD
- Afternoon - PC realignment
- Calibrate QPD
- Check PC alignment starting point-S1, S2, no anal, RHWP scan
- Align Pockels cell
- Evening - PC realignment (maybe RHWP scans)
- PC alignment

Day 3

- Day 3 PC -RHWP scans + downstream lens insertion
- Morning - RHWP scans
- Need someone in control room who can change beam current, turn on/off autogaining on bpms
- HallA Electron beam >20uA (70uA is good) going up to at least FC1
- BCM/BPM calibration scan - 5uA steps of current up to max current, auto gaining on injector bpms off
- Autogaining of injector bpms back on
- 4 RHWP scans (IHWP in/out PITA 0/ PITA non-zero) - 2-4 hours
- Afternoon - downstream lens insertion + camera measurements
- Need Access to injector laser room
- Need someone who can get the laser to give us 3-5mW of Hall A laser beam
- $3-5 \mathrm{~mW}$ Hall A laser (CW or pulsed, either is fine)
- Insert 1 m lens downstream of Pockels Cell at predetermined z -position $\mathbf{z =}$...
- Measure spiricon spot size at cathode
- Measure spot size at vacuum window (if possible)
- Evening - bpm/bcm calibration + RHWP scans
- Need someone in control room who can change beam current, turn on
- HallA Electron beam >20uA (70uA is good) going up to at least FC1
- 4 RHWP scans (IHWP in/out PITA 0/ PITA non-zero) - 2-4 hours
- decide to keep downstream lens or remove + RHWP scans
- Need Access to injector laser room
- Remove 1 m lens downstream of PC (if decided)

Day 4

- Day 4 Photocathode rotation
- Morning
- Need Access to injector room
- Need someone who can help us rotate the photocathode Angle \#2
- HallA Electron beam >20uA (70uA is good) going up to at least FC1
- Need someone in control room who can change beam current, turn on/off autogaining on bpms
- HallA Electron beam >20uA (70uA is good) going up to at least FC1
- BCM/BPM calibration scan - 5uA steps of current up to max current, auto gaining on injector bpms off
- Autogaining of injector bpms back on
- 4 RHWP scans (IHWP in/out PITA 0/ PITA non-zero) - 2-4 hours
- Afternoon
- Need Access to injector room
- Need someone who can help us rotate the photocathode Angle \#3
- HallA Electron beam >20uA (70uA is good) going up to at least FC1
- 4 RHWP scans (IHWP in/out PITA 0/ PITA non-zero) - 2-4 hours
- Evening
- Need Access to injector room
- Need someone who can help us rotate the photocathode Angle \#4
- HallA Electron beam >20uA (70uA is good) going up to at least FC1
- 4 RHWP scans (IHWP in/out PITA 0/ PITA non-zero) - 2-4 hours

Day 5

- Day 5 Photocathode rotation final
- Morning/Afternoon/Evening
- Need Access to injector room
- Need someone who can help us rotate the photocathode FINAL ANGLE
- HallA Electron beam >20uA (70uA is good) going up to at least FC1
- 4 RHWP scans (IHWP in/out PITA 0/ PITA non-zero) - 2-4 hours
- PC translation to optimize
- 4 RHWP scans (IHWP in/out PITA 0/ PITA non-zero) - 2-4 hours

$w_{\mathrm{pc}}=1.35 \mathrm{mmX}, 1.46 \mathrm{mmY}, \mathrm{w}_{\mathrm{qpd}}=1.43 \mathrm{mmX}, 1.58 \mathrm{mmY}$

RHWP scan, Kun 3928, IHWP OUT, qPd1, PTIA $=0$

$A q=-958.35+-2338.94 \sin (1 x+152.78)+-42100.45 \sin (2 x+146.72)+1898.59 \sin (4 x+45.67)$

$D x=0.10+-1.01 \sin \left(x^{*} 1+93.11\right)+-0.25 \sin (2 x+146.25)+-1.30 \sin (4 x+2.91)$

$D y=0.04+-0.53 \sin (x * 1+148.36)+-0.33 \sin (2 x+136.20)+0.76 \sin (4 x+162.97)$

RHWP scan, Kun 3929, IHWP IN, qpal, PTIA $=0$

$A q=378.71+2431.11 \sin (1 x+170.57)+40793.87 \sin (2 x+148.38)+-4318.21 \sin (4 x+76.52)$

$$
D x=0.23+0.73 \sin \left(x^{*} 1+105.34\right)+-0.18 \sin (2 x+63.61)+1.50 \sin (4 x+15.66)
$$

$D y=-0.17+0.78 \sin (x * 1+168.29)+0.28 \sin (2 x+164.66)+-1.10 \sin (4 x+155.40)$

4θ terms

1.3um(IHWPout)/1.5um(IHWPin)X, 0.76um(IHWPout)/1.1um(IHWPin)Y

wpcx<=0.324mmX,0.341mmY wqpdx~0.886mmX,~0.891mmY PC NOT realigned, angle=(1mrad yaw,6mrad pitch)

RHWP scan, Run 3938, 1 HWP OUT, qpd1, PITA $=0$

$A q=-1193.40+-1605.97 \sin (1 x+154.47)+-39045.82 \sin (2 x+146.64)+1345.18 \sin (4 x+149.34)$

$\mathrm{Dx}=-0.06+-0.13 \sin \left(\mathrm{x}^{*} 1+51.00\right)+0.07 \sin (2 \mathrm{x}+158.24)+-2.23 \sin (4 \mathrm{x}+33.65)-\mathrm{Aq}^{*}-0.00016880$

$D y=0.03+-0.16 \sin \left(x^{*} 1+154.05\right)+-0.05 \sin (2 x+117.39)+2.53 \sin (4 x+160.21)-A q^{*}-0.00003150$

RHWP scan, Run 3939, 1 HWP IN, qpd1, PIIA $=0$

$A q=-38.28+1904.43 \sin (1 x+144.99)+38184.48 \sin (2 x+147.64)+-3576.49 \sin (4 x+105.14)$

$$
D x=-0.10+0.10 \sin \left(x^{*} 1+66.30\right)+-0.41 \sin (2 x+158.92)+3.07 \sin (4 x+36.20)-A q^{*}-0.00016880
$$

$\mathrm{Dy}=-0.13+0.16 \sin \left(\mathrm{x}^{*} 1+138.86\right)+0.17 \sin (2 \mathrm{x}+124.77)+-4.34 \sin (4 \mathrm{x}+162.36) \cdot \mathrm{Aq}^{*}-0.00003150$
4θ terms
$2.2 u m(I H W P o u t) / 3.1 u m(I H W P i n) X, 2.5 u m(I H W P o u t) / 4.3 u m(I H W P i n) Y$
wpcx<=0.324mmX,0.341mmY wqpdx $\sim 0.886 \mathrm{mmX}, \sim 0.891 \mathrm{mmY}$ PC realigned, angle $=(-0.3 \mathrm{mrad}$ yaw, 5.5 mrad pitch $)$

RHWP scan, Run 3955, 1HWP UUI, qPd1, PITA $=13$

$A q=-616.04+-3763.07 \sin (1 x+136.19)+-42401.76 \sin (2 x+154.13)+4843.15 \sin (4 x+116.31)$

$D x=0.07+-0.15 \sin \left(x^{*} 1+72.17\right)+0.08 \sin (2 x+0.42)+-0.29 \sin (4 x+63.97)-A q^{*} 0.00000015$

$\mathrm{Dy}=0.19+-0.08 \sin \left(\mathrm{x}^{*} 1+148.76\right)+-0.13 \sin (2 \mathrm{x}+113.67)+0.24 \sin (4 \mathrm{x}+179.40)-\mathrm{Aq}^{*}-0.00001758$

RHWP scan, Kun 3959, IHWP IN, qpd1, PTIA =0

$A q=1351.67+1242.14 \sin (1 x+71.54)+42276.28 \sin (2 x+157.28)+2003.40 \sin (4 x+53.62)$

apd1. Dxvs. 4
$D x=-0.02+0.15 \sin \left(x^{*} 1+64.62\right)+-0.05 \sin (2 x+171.11)+0.27 \sin (4 x+65.99)-A q^{*} 0.00000363$

$\mathrm{Dy}=-\mathbf{0 . 1 0}+0.16 \sin \left(\mathrm{x}^{*} 1+139.12\right)+-0.06 \sin (2 \mathrm{x}+143.07)+-0.09 \sin (4 \mathrm{x}+141.54)-\mathrm{Aq}{ }^{*}-0.00001645$
4θ terms
0.29 um(IHWPout)/0.27um(IHWPin)X, 0.24um(IHWPout)/0.09um(IHWPin)Y

wpcx<=0.324mmX,0.341mmY wqpdx $\sim 2.06 m m X, \sim 1.907 \mathrm{mmY}$ PC realigned, angle $=$ (-0.3mrad yaw, 5.5 mrad pitch)

RHWP scan, RUn 3966, 1 HWP UUT, qPd1, PITA $=0$

$A q=-1124.01+-1317.14 \sin (1 x+110.43)+-42666.97 \sin (2 x+156.04)+-1319.43 \sin (4 x+285.86)$

$D x=-0.02+-0.24 \sin \left(x^{*} 1+65.68\right)+0.13 \sin (2 x+151.02)+-0.47 \sin (4 x+64.36)-\mathrm{Aq}^{*} 0.00000014$

$\mathrm{Dy}=0.21+-0.15 \sin \left(\mathrm{x}^{*} 1+156.81\right)+0.39 \sin (2 \mathrm{x}+167.80)+-0.31 \sin (4 \mathrm{x}+15.08)-\mathrm{Aq}^{*}-0.00002046$

RHWP scan, Run 3967, IHWP IN, qpd1, PITA $=0$

$A q=1125.97+578.45 \sin (1 x+85.91)+42608.65 \sin (2 x+157.78)+-1773.13 \sin (4 x+36.94)$

$D x=-0.02+0.32 \sin \left(x^{*} 1+63.93\right)+0.06 \sin (2 x+55.77)+0.54 \sin (4 x+55.84)-\mathrm{Aq}^{*} 0.00000014$

$D y=-0.20+0.19 \sin \left(x^{*} 1+163.99\right)+-0.48 \sin (2 x+157.50)+-0.36 \sin (4 x+149.25)-A q^{*}-0.00002046$
4θ terms
0.47um(IHWPout)/0.54um(IHWPin)X, 0.33um(IHWPout)/0.36um(IHWPin)Y

