4.2. Stern-Gerlach beam deflection by externally-powered cavity. From Eq. (147), the transverse forces applied to a particle due to its magnetic moment are

$$
\begin{equation*}
R_{x}^{m}=\mu_{x}^{*} \frac{\partial B_{x}}{\partial x}+\mu_{y}^{*} \frac{\partial B_{y}}{\partial x}, \quad R_{y}^{m}=\mu_{x}^{*} \frac{\partial B_{x}}{\partial y}+\mu_{y}^{*} \frac{\partial B_{y}}{\partial y} \tag{150}
\end{equation*}
$$

Copying from Eqs. (61) through (63), and evaluating the only non-vanishing transverse derivative of a transverse component,

$$
\begin{align*}
E_{0 y} & =-e^{-j k_{0}\left(z_{0} \cos \alpha_{0}+x_{0} \sin \alpha_{0}\right)} e^{j \omega_{0} t_{0}} E_{0}  \tag{151}\\
B_{0 x} & =\cos \alpha_{0} e^{-j k_{0}\left(z_{0} \cos \alpha_{0}+x_{0} \sin \alpha_{0}\right)} e^{j \omega_{0} t_{0}} B_{0},  \tag{152}\\
B_{0 z} & =-\sin \alpha_{0} e^{-j k_{0}\left(z_{0} \cos \alpha_{0}+x_{0} \sin \alpha_{0}\right)} e^{j \omega_{0} t_{0}} B_{0},  \tag{153}\\
\frac{\partial B_{0 x}}{\partial x_{0}} & =-j k_{0} \sin \alpha_{0} \cos \alpha_{0} e^{-j k_{0}\left(z_{0} \cos \alpha_{0}+x_{0} \sin \alpha_{0}\right)} e^{j \omega_{0} t_{0}} B_{0} \tag{154}
\end{align*}
$$

In our impulse approximation, the particle is treated as stationary at the origin during the time interval that the cavity is passing. The momentum transfered from wave to particle is accumulated, but the effect of any recoil displacement during this time is neglected. We therefore set $x_{0}=z_{0}=0$ and substitute into the first of Eqs. (150);

$$
\begin{equation*}
R_{0 x}^{m_{\perp} T E}=\mu_{x}^{*} \frac{\partial B_{0 x}}{\partial x_{0}}=-j k_{0} \mu_{x}^{*} \sin \alpha_{0} \cos \alpha_{0} e^{j \omega_{0} t_{0}} B_{0} \tag{155}
\end{equation*}
$$

Following the same procedure as in Eqs. (71), we can calculate the maximum possible transverse momentum impulse that can be administered to the particle by a skew wave during one half cycle (which is the maximum possible);

$$
\begin{align*}
\Delta p_{0 x}^{\perp \max } c & =\frac{c}{\omega_{0}} \int_{0}^{\pi} R_{0 y}^{m_{\perp} T E}\left(t_{0}, 0\right) d\left(\omega_{0} t_{0}\right) \\
& =-j \mu_{x}^{*} B_{0} \sin \alpha_{0} \cos \alpha_{0} \int_{0}^{\pi}\left(\cos \omega_{0} t_{0}+j \sin \omega_{0} t_{0}\right) d\left(\omega_{0} t_{0}\right) \\
& =2 \mu_{x}^{*} B_{0} \sin \alpha_{0} \cos \alpha_{0} \tag{156}
\end{align*}
$$

The sign here could be reversed by shifting the RF phase by $\pi$. To complete the transformation to laboratory parameters, noting from Figure 7 that $B_{0 z}=-B_{0} \sin \alpha_{0}$, and using the fact that $B_{\|}$is invariant,

$$
\begin{equation*}
-B \sin \alpha=B_{z}=B_{0 z}=-B_{0} \sin \alpha_{0} \tag{157}
\end{equation*}
$$

can be used. (Note that $B$ is the (transverse to propagation direction) laboratory frame magnetic field of the skew wave, not the total longitudinal magnetic field summed over skew waves.) Also (in fully-relativistic approximation)

$$
\begin{equation*}
\cos \alpha_{0 \pm}=-\sqrt{\frac{1}{1+\tan ^{2} \alpha_{0 \pm}}} \tag{158}
\end{equation*}
$$

showing that both $\cos \alpha_{0 \pm}$ values are negative (as has been explained previously). Substituting these expressions into Eq. (156) yields

$$
\begin{equation*}
\Delta p_{0 x}^{\perp \max } c=2 \mu_{x}^{*}(-B \sin \alpha) \sqrt{\frac{1}{1+\tan ^{2} \alpha_{0 \pm}}} \approx 2 \mu_{x}^{*}(-B \sin \alpha) \tag{159}
\end{equation*}
$$

Finally we note that the transverse component of recoil momentum is unchanged by Lorentz transformation, and obtain

$$
\begin{equation*}
\Delta p_{x}^{\perp \max } c \approx 2 \mu_{x}^{*}(-B \sin \alpha) \tag{160}
\end{equation*}
$$

We retain the negative sign only for consistency, even though the sign of the momentum impulse can be reversed by reversing the RF phase, as noted in connection with Eq. (156).

Assuming fully relativistic kinematics, the laboratory longitudinal momentum of the particle is $p=\gamma m_{e} c$. As a result the laboratory deflection angle due to a single skew wave is given by

$$
\begin{equation*}
\Delta \theta_{1} \approx \frac{2 \mu_{x}^{*} B \sin \alpha}{\gamma m_{e} c^{2}} \approx \frac{\sqrt{2} \mu_{B} B}{\gamma m_{e} c^{2}} \tag{161}
\end{equation*}
$$

where approximation $\sin \alpha \approx 1 / \sqrt{2}$ has been made and $\mu_{x}^{*}$ has been replaced by Bohr magnetron $\mu_{B}=5.78 \times 10^{-5} \mathrm{eV} / \mathrm{T}$. For the $\mathrm{TE}_{101}$ mode all 4 skew waves interfere constructively and the total deflection is given by

$$
\begin{equation*}
\Delta \theta \approx \frac{2 \mu_{B} B_{\perp}}{\gamma m_{e} c^{2}} \tag{162}
\end{equation*}
$$

This formula can be compared to a standard formula for non-relativistic Stern-Gerlach deflection, by a DC magnet of length $L_{z}$ with magnetic field gradient $d B_{\perp} / d x$, for a spin $1 / 2$ molecule traveling at speed $V_{z}$ along the $z$-axis;

$$
\begin{equation*}
\Delta \theta_{\mathrm{NR}} \approx \frac{\mu_{B} L_{z} d B_{\perp} / d x}{M V_{z}^{2}} \tag{163}
\end{equation*}
$$

4.2.1. Numerical example of Stern-Gerlach deflection. We consider a case in which our $\mathrm{TE}_{101}$ rectangular cavity is driven at power $P_{\text {ext }}=10^{4} \mathrm{~W}$. According to Eqs. (9) and (13) the magnetic field is given (roughly) by

$$
\begin{equation*}
B_{\perp}=\mu_{0} H_{\perp}=\mu_{0} \sqrt{\frac{Q_{\text {rect. }}}{2 \pi f_{r}} \frac{8}{a b d \mu_{0}} \frac{1}{P^{\text {ext }}}} P^{\text {ext }}, \quad \mu_{0} \sqrt{[\mathrm{~s}]\left[\frac{\mathrm{A}^{2}}{\mathrm{Jm}^{2}}\right]\left[\frac{\mathrm{s}}{\mathrm{~J}}\right]}\left[\frac{\mathrm{J}}{\mathrm{~s}}\right] \tag{164}
\end{equation*}
$$

where numerical values of the various parameters are given by

$$
\begin{aligned}
\text { bunch frequency } f_{0} & =0.5 \times 10^{9} \mathrm{~Hz} \\
\text { beam current } I_{e} & =100 \mu \mathrm{~A}
\end{aligned}
$$

electrons/bunch $N_{e}=1.3 \times 10^{6}$, electron energy $\mathcal{E}_{e}=1 \mathrm{MeV}$, relativistic gamma $\gamma_{V}=1.96$, electron magnetic moment $\mu_{e}^{*}=-0.928 \times 10^{-23}, \mathrm{~J} / \mathrm{T}$,

Resonator Q - value $Q_{r}=29700$, resonator frequency $f_{r}=0.75 \mathrm{GHz}$, resonator dimensions $a / b / d=0.292 / 0.146 / 0.274 \mathrm{~m}$

$$
\begin{aligned}
\frac{a b d \mu_{0}}{8} & =1.83 \times 10^{-9} \frac{\mathrm{~J}}{(\mathrm{~A} / \mathrm{m})^{2}} \\
\sqrt{\frac{Q_{\text {rect. }}}{2 \pi f_{r}} \frac{8}{a b d \mu_{0}} \frac{1}{P^{\mathrm{ext}}}} & =\frac{58.6}{\sqrt{P^{\mathrm{ext}}}}, \\
\text { external power } P_{\mathrm{ext}} & =10^{4}, \mathrm{~W} \\
B_{\perp} & =0.0074 \mathrm{~T}
\end{aligned}
$$

beam deflection angle $\Delta \theta=0.85 \times 10^{-12}$ radian,
lattice functions $\beta_{1} / \beta_{2}=50 / 100 \mathrm{~m}$,
betatron amplitude at $\beta_{2} \Delta x=0.6 \times 10^{-10} \mathrm{~m}$.
The last few lines in the previous table give the Stern-Gerlach angular deflection $\Delta \theta$ caused by a cavity located at a point where the lattice beta function is $\beta_{1}$, and the displacement $\Delta x$ at a downstream location with beta function $\beta_{2}$ and betatron phase $\pi / 2$.

According to these calculations, to confirm the S-G deflection it will be necessary to detect betatron oscillation having Angstrom-scale amplitude. This should be possible, even with room temperature detection, since the drive frequency is externally controlled, and very narrow-band filtering over long sampling time can be employed.

Once the (non-controversial) transverse Stern-Gerlach effect has been confirmed, one will be able to address the Stern-Gerlach energy excitation with more confidence.

