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4.2. Stern-Gerlach beam deflection by externally-powered cavity. From
Eq. (147), the transverse forces applied to a particle due to its magnetic moment are
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Copying from Eqs. (61) through (63), and evaluating the only non-vanishing transverse
derivative of a transverse component,

E0y = −e−jk0(z0 cosα0+x0 sinα0) ejω0t0 E0, (151)

B0x = cosα0 e
−jk0(z0 cosα0+x0 sinα0) ejω0t0 B0, (152)

B0z = − sinα0 e
−jk0(z0 cosα0+x0 sinα0) ejω0t0 B0, (153)
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In our impulse approximation, the particle is treated as stationary at the origin during
the time interval that the cavity is passing. The momentum transfered from wave to
particle is accumulated, but the effect of any recoil displacement during this time is
neglected. We therefore set x0 = z0 = 0 and substitute into the first of Eqs. (150);
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Following the same procedure as in Eqs. (71), we can calculate the maximum possible
transverse momentum impulse that can be administered to the particle by a skew wave
during one half cycle (which is the maximum possible);
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The sign here could be reversed by shifting the RF phase by π. To complete the
transformation to laboratory parameters, noting from Figure 7 that B0z = −B0 sinα0,
and using the fact that B‖ is invariant,

−B sinα = Bz = B0z = −B0 sinα0. (157)

can be used. (Note that B is the (transverse to propagation direction) laboratory frame
magnetic field of the skew wave, not the total longitudinal magnetic field summed over
skew waves.) Also (in fully-relativistic approximation)

cosα0± = −
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, (158)
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showing that both cosα0± values are negative (as has been explained previously).
Substituting these expressions into Eq. (156) yields

∆p⊥max
0x c = 2µ∗x(−B sinα)

√
1

1 + tan2 α0±
≈ 2µ∗x(−B sinα). (159)

Finally we note that the transverse component of recoil momentum is unchanged by
Lorentz transformation, and obtain

∆p⊥max
x c ≈ 2µ∗x(−B sinα). (160)

We retain the negative sign only for consistency, even though the sign of the momen-
tum impulse can be reversed by reversing the RF phase, as noted in connection with
Eq. (156).

Assuming fully relativistic kinematics, the laboratory longitudinal momentum of
the particle is p = γmec. As a result the laboratory deflection angle due to a single
skew wave is given by
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where approximation sinα ≈ 1/
√

2 has been made and µ∗x has been replaced by Bohr
magnetron µB = 5.78 × 10−5 eV/T. For the TE101 mode all 4 skew waves interfere
constructively and the total deflection is given by

∆θ ≈ 2µBB⊥
γmec2

, (162)

This formula can be compared to a standard formula for non-relativistic Stern-Gerlach
deflection, by a DC magnet of length Lz with magnetic field gradient dB⊥/dx, for a
spin 1/2 molecule traveling at speed Vz along the z-axis;

∆θNR ≈
µBLzdB⊥/dx
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. (163)

4.2.1. Numerical example of Stern-Gerlach deflection. We consider a case in which
our TE101 rectangular cavity is driven at power Pext = 104 W. According to Eqs. (9)
and (13) the magnetic field is given (roughly) by
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where numerical values of the various parameters are given by

bunch frequency f0 = 0.5× 109 Hz,

beam current Ie = 100µA,

electrons/bunch Ne = 1.3× 106,

electron energy Ee = 1 MeV,

relativistic gamma γ
V

= 1.96,

electron magnetic moment µ∗e = −0.928× 10−23, J/T,

Resonator Q− value Qr = 29700,

resonator frequency fr = 0.75 GHz,

resonator dimensions a/b/d = 0.292/0.146/0.274 m
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,

external power Pext = 104, W,

B⊥ = 0.0074 T,

beam deflection angle ∆θ = 0.85× 10−12 radian,

lattice functions β1/β2 = 50/100 m,

betatron amplitude at β2∆x = 0.6× 10−10 m. (165)

The last few lines in the previous table give the Stern-Gerlach angular deflection ∆θ
caused by a cavity located at a point where the lattice beta function is β1, and the
displacement ∆x at a downstream location with beta function β2 and betatron phase
π/2.

According to these calculations, to confirm the S-G deflection it will be necessary
to detect betatron oscillation having Angstrom-scale amplitude. This should be pos-
sible, even with room temperature detection, since the drive frequency is externally
controlled, and very narrow-band filtering over long sampling time can be employed.

Once the (non-controversial) transverse Stern-Gerlach effect has been confirmed,
one will be able to address the Stern-Gerlach energy excitation with more confidence.


