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1 Purpose/Intro

Calculate and predict the momenta of the primary electron, ion, and secondary electron before and after ionization,
assuming the ion is initially at rest and there are no external forces on the system. The collision we are considering is:

epi
+ Ii → epf

+ If + es

where i and f refer to before and after ionization respectively. The primary electron collides with a gas molecule and ionizes
it, producing an ion and secondary electron (the primary electron scatters away after the collision). We willassume the
problem to be non-relativistic initially and then extend it to the relativistic case. In order to simplify the problem, we will
initially solve the 2-body problem where we consider the ion and secondary electron as one target molecule, which is assumed
to be at rest initially, and then solve for the �nal momentum of the primary electron. By conservation of momentum, the
change in momentum of the primary electron is independent of the �nal momenta of the ion and secondary electron. Thus,
if we know the energy/momentum of the secondary electron, we can solve for the energy/momentum of the ion.

2 2-Body Derivation

2.1 Momentum Conservation

To solve for the �nal momentum of the primary electron, we will consider only the momentum and kinetic energy of the
primary electron and the target molecule. Later, the energy and momentum of the target will be split into the energy and
momentum of the ion and the secondary electron. Let ~pe be the primary electron momentum and ~ptar be the target molecule
momentum before the collision. We'll assume that there are no external forces on the system so that momentum is conserved.
We can simplify the problem by considering the center-of-mass coordinate system. In this case, the total momentum in the
center of mass frame is equal to zero.

~pcm = (me +mtar)~vcm = me~ve +mtar~vtar (1)

~vcm =
me

me +mtar
~ve +

mtar

me +mtar
~vtar (2)

We can now write down the individual momenta in the center of mass frame:

~ve,cm = ~ve − ~vcm
~vtar,cm = ~vtar − ~vcm

~pe,cm = ~pe −me~vcm = me~ve −me

(
me

me +mtar
~ve +

mtar

me +mtar
~vtar

)
~pe,cm =

memtar

me +mtar
(~ve − ~vtar) = µ2body (~ve − ~vtar) (3)

~ptar,cm = ~ptar −mtar~vcm = µ2body (~vtar − ~ve) (4)

µ2body =
memtar

me +mtar
(5)

where µ2body is the reduced mass of the system (�2body� is to distinguish it from the reduced masses de�ned in the 3-body

problem). Clearly ~pe,cm+~ptar,cm = ~0, implying that ~pe,cm = −~ptar,cm , meaning that in the center of mass frame, the electron
and target molecule collide and return with momentum of the same magnitude, but in opposite directions, as expected.

2.2 Change in momentum

We can consider the momentum change to the electron and target molecule as a result of the collision. Since a change
in momentum is invariant under a Galilean (non-relativistic) transformation, we can write down the change in momenta and
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velocity for the electron and target molecule in the lab frame:

∆~pe = ∆~pe,cm = 2µ2body (~vtar − ~ve) (6)

∆~ptar = ∆~ptar,cm = 2µ2body (~ve − ~vtar) (7)

∆~ve =
∆~pe
me

= 2
mtar

me +mtar
(~vtar − ~ve) (8)

∆~vtar =
∆~ptar
mtar

= 2
me

me +mtar
(~ve − ~vtar) (9)

If we assume that the target molecule is initially at rest (~vtar = 0), then the �nal velocity of the primary electron is

~v′e =

(
1− 2mtar

me +mtar

)
~ve =

(
me −mtar

me +mtar

)
~ve (10)

where the prime indicates the momentum/velocity after the collision. Since me < mtar, v
′
e < 0 and

v′e
ve

< 1, implying that

the primary electron scatters backward with a reduced velocity, as expected.

3 3-Body Derivation

We can make a similar derivation in the 3-body case where we now consider the ion and secondary electron separately.
In this case: mtar = mI + me where mI and me are the masses of the ion and secondary electron respectively. In order to
di�erentiate between the two electrons, ~Pep and ~Pes denote the primary and secondary electrons respectively. We'll write out
the momenta and velocities of the three particles initially and then use initial conditions to solve the problem. In order to
di�erentiate the velocities and momenta from the above derivation, I'll use ~P and ~V to denote the momentum and velocity
respectively.

3.1 Conservation of Momentum

Again, considering the center of mass reference frame, we can write down the center of mass momentum and velocity:

~Pcm =
(
mep +mI +mes

)
~Vcm = mep

~Vep +mI
~VI +mes

~Ves (11)

~Vcm =
mep

mep +mI +mes

~Vep +
mI

mep +mI +mes

~VI +
mes

mep +mI +mes

~Ves (12)
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The individual center of mass momenta are:

~Vep,cm = ~Vep − ~Vcm (13)

~VI,cm = ~VI − ~Vcm (14)

~Ves,cm = ~Ves − ~Vcm (15)

~Pep,cm = ~Pep −mep
~Vcm

= mep
~Vep −mep

(
mep

mep +mI +mes

~Vep +
mI

mep +mI +mes

~VI +
mes

mep +mI +mes

~Ves

)
=
mep

(
mep +mI +mes

)
mep +mI +mes

~Vep −

(
m2

ep

mep +mI +mes

~Vep +
mImep

mep +mI +mes

~VI +
mepmes

mep +mI +mes

~Ves

)

=
m2

ep

mep +mI +mes

~Vep +
mepmI

mep +mI +mes

~Vep +
mepmes

mep +mI +mes

~Vep −
m2

ep

mep +mI +mes

~Vep

−
mImep

mep +mI +mes

~VI −
mepmes

mep +mI +mes

~Ves

=
mepmI

mep +mI +mes

(
~Vep − ~VI

)
+

mepmes

mep +mI +mes

(
~Vep − ~Ves

)
~Pep,cm = µep,I

(
~Vep − ~VI

)
+ µep,es

(
~Vep − ~Ves

)
(16)

~PI,cm = ~PI −mI
~Vcm

=
mI

(
mep +mI +mes

)
mep +mI +mes

~VI −
(

mImep

mep +mI +mes

~Vep +
m2

I

mep +mI +mes

~VI +
mImes

mep +mI +mes

~Ves

)
=

mImep

mep +mI +mes

~VI +
m2

I

mep +mI +mes

~VI +
mImes

mep +mI +mes

~VI −
mImep

mep +mI +mes

~Vep

− m2
I

mep +mI +mes

~VI −
mImes

mep +mI +mes

~Ves

=
mImep

mep +mI +mes

(
~VI − ~Vep

)
+

mImes

mep +mI +mes

(
~VI − ~Ves

)
~PI,cm = µep,I

(
~VI − ~Vep

)
+ µI,es

(
~VI − ~Ves

)
(17)

~Pes,cm = µep,es

(
~Ves − ~Vep

)
+ µI,es

(
~Ves − ~VI

)
(18)

~Pep,cm + ~PI,cm + ~Pes,cm = µep,I

(
~Vep − ~VI

)
+ µep,es

(
~Vep − ~Ves

)
+ µep,I

(
~VI − ~Vep

)
(19)

+ µI,es

(
~VI − ~Ves

)
+ µep,es

(
~Ves − ~Vep

)
+ µI,es

(
~Ves − ~VI

)
µep,es =

mepmes

mep +mI +mes

(20)

µI,es =
mImes

mep +mI +mes

(21)

µep,I =
mImep

mep +mI +mes

(22)

Note that mep = mes = me. In our case, the target molecule is at rest initially, so ~VI = ~Ves = 0 and so the center of mass
momenta become:

~Pep,cm =
(
µep,I + µep,es

)
~Vep (23)

~PI,cm = −µep,I
~Vep (24)

~Pes,cm = −µep,es
~Vep (25)

Clearly ~Pep,cm + ~PI,cm + ~Pes,cm = ~0. Note that this equation holds true both before and after the collision.
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3.2 Energy Conservation

Neglecting any source of potential energy (Coulomb potential, e.g.), total kinetic energy is conserved. This assumption
is valid for fast collisions, where the contribution of kinetic energy to the total energy of each particle is much greater than
that of potential energy. Thus, in the center of mass frame, we have

Kep,cm +KI,cm +Kes,cm = K ′
ep,cm +K ′

I,cm +K ′
es,cm

P 2
ep,cm

2me
+
P 2
I,cm

2mI
+
P 2
es,cm

2me
=
P ′2
ep,cm

2me
+
P ′2
I,cm

2mI
+
P ′2
es,cm

2me
(26)

Note that ~P · ~P = P 2. Plugging in the squares of (23)-(25) into (26) yields:(
µep,I + µep,es

)2
2me

V 2
ep +

µ2
ep,I

2mI
V 2
ep +

µ2
ep,es

2me
V 2
ep =

(
µep,I + µep,es

)2
2me

V ′2
ep,cm +

µ2
ep,I

2mI
V ′2
I,cm +

µ2
ep,es

2me
V ′2
es,cm[(

µep,I + µep,es

)2
+ µ2

ep,es

2me
+
µ2
ep,I

2mI

]
V 2
ep =

(
µep,I + µep,es

)2
2me

V ′2
ep,cm +

µ2
ep,I

2mI
V ′2
I,cm +

µ2
ep,es

2me
V ′2
es,cm (27)

3.3 Change in Momentum

To conserve momentum and energy, we must have that the �nal momentum of the primary electron is negative the original
momentum

~Pep,cm = −~P ′
ep,cm (28)

The ion and secondary electron are initially �together� before the collision, so the total �nal momentum of the ion and
secondary electron is negative the original momentum:

~PI,cm + ~Pes,cm = −
(
~P ′
I,cm + ~P ′

es,cm

)
(29)

From (28) and (29), the momentum changes are

∆~Pep,cm = −2~Pep,cm (30)

∆~PI,cm + ∆~Pes,cm = −2
(
~PI,cm + ~Pes,cm

)
= 2~Pep,cm (31)

∆~Pep,cm = −
(

∆~PI,cm + ∆~Pes,cm

)
(32)
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as expected. Using the invariance of momentum change and eqs. (13)-(15)

∆~Pep,cm = ∆~Pep = −2
(
µep,I + µep,es

)
~Vep

me
~V ′
ep,cm −me

~Vep,cm = −2
(
µep,I + µep,es

)
~Vep

me
~V ′
ep,cm = me

(
~Vep − ~Vcm

)
− 2

(
µep,I + µep,es

)
~Vep

= me

(
1− me

2me +mI

)
~Vep − 2

(
µep,I + µep,es

)
~Vep

=

(
me −

m2
e

2me +mI
− 2µep,I − 2µep,es

)
~Vep

=

(
me −

m2
e

2me +mI
− 2

mIme

2me +mI
− 2m2

e

2me +mI

)
~Vep

=

(
me −

3m2
e

2me +mI
− 2

mIme

2me +mI

)
~Vep

=

(
2m2

e +memI

2me +mI
− 3m2

e

2me +mI
− 2

mIme

2me +mI

)
~Vep

=

(
−m2

e −memI

2me +mI

)
~Vep

~V ′
ep,cm = −

(
me +mI

2me +mI

)
~Vep (33)

∆~Pes,cm = ∆~P es

me
~V ′
es,cm = me

~Ves,cm +me
~V ′
es

~V ′
es,cm = ~V ′

es −
me

2me +mI

~Vep (34)

~P ′
I,cm = ~P ′

ep,cm − ~P ′
es,cm

mI
~V ′
I,cm = me

(
~V ′
ep,cm − ~V ′

es,cm

)
~V ′
I,cm =

me

mI

(
−
(
me +mI

2me +mI

)
~Vep − ~V ′

es +
me

2me +mI

~Vep

)
= −me

mI

(
mI

2me +mI

~Vep + ~V ′
es

)
~V ′
I,cm = −

(
me

2me +mI

~Vep +
me

mI

~V ′
es

)
(35)

∆~PI,cm = ∆~PI

mI
~V ′
I,cm −mI

~VI,cm = mI
~V ′
I +mI

~VI

~V ′
I,cm = ~V ′

I −
mep

mep +mI +mes

~Vep (36)

~V ′
I = −

(
me

2me +mI

~Vep +
me

mI

~V ′
es

)
− me

2me +mI

~Vep

~V ′
I = −

(
2me

2me +mI

~Vep +
me

mI

~V ′
es

)
(37)
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To summarize our results:

~V ′
eP = − mI

2me +mI

~Vep (38)

~Pep,cm = me
~Vep,cm =

(
µep,I + µep,es

)
~Vep (39)

~P ′
ep,cm = me

~V ′
ep,cm =

(
−m2

e −memI

2me +mI

)
~Vep (40)

~V ′
I = −

(
2me

2me +mI

~Vep +
me

mI

~V ′
es

)
(41)

~V ′
I,cm = −

(
me

2me +mI

~Vep +
me

mI

~V ′
es

)
(42)

~V ′
es,cm = ~V ′

es −
me

2me +mI

~Vep (43)

~Vep and ~V ′
es (and by extension ~VI and ~Ves) are known.

~V ′
ep and ~V ′

I are given by eqs. (38) and (41) respectively and are based
on known values.
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