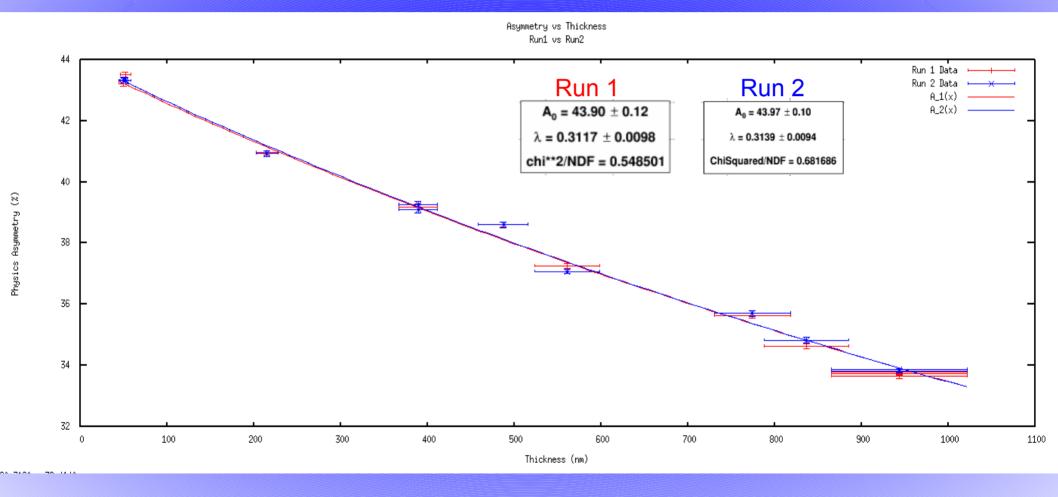

Mott Run 2 Analysis

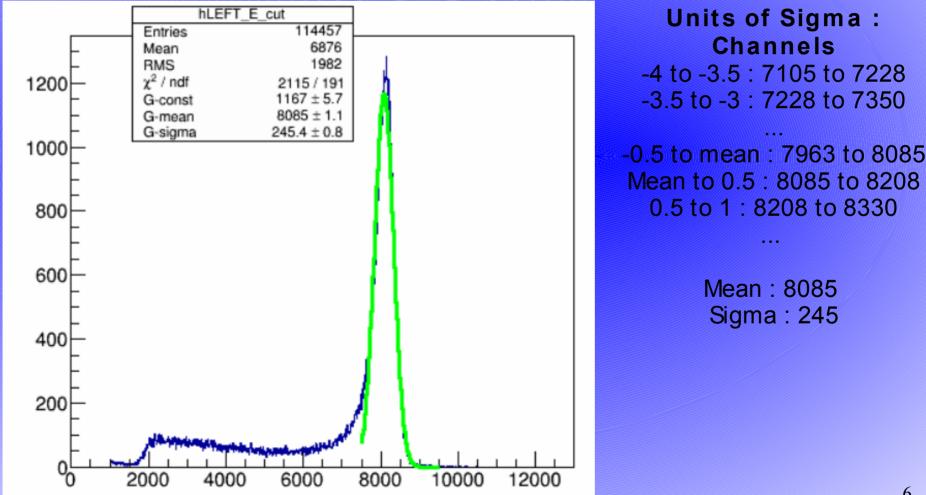
- Asymmetry versus Thickness: Run 2 versus Run 1 with nominal cuts: E: -1 to + 3 sigma, Time-of-Flight -2 to + 2 sigma
- Asymmetry versus Thickness: Exploring Asymmetry Depedence on Energy Cut in Half-Sigma Slices
- Detector Energy Resolution Energy Spread Corrected
- Relative Rates Measurement Results


Asymmetry vs Thickness Run 2 – E-Cut: -1 to +3 Sigma, ToF-Cut -2 to +2 Sigma

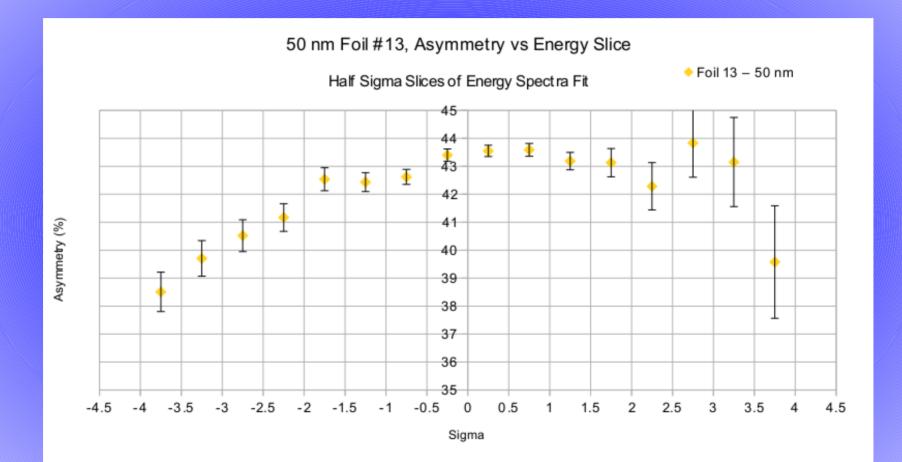
Target Ladder	Nominal Thickness	FESEM Thickness	d(FESEM Thickness)	Asymmetry	d(Asymmet	46]
Position	(nm)	(nm)	(nm)	(%)	ry) %	(%)	R		A ₀ = 43.97 ±	0.10		
15	1000	943.71	78.19	33.817	0.0729	<u> </u>			λ = 0.3139 ± 0	.0094		
2	625	561.18	37.24	37.075	0.0758	Asymmetry 8			ChiSquared/NDF =	0.681686		
13	50	52.03	5.99	43.310	0.1030	Ĕ ⁴⁰		184]		
14	350	389.44	22.21	39.083	0.0944	u 18		-0-				
3	870	836.76	48.76	34.828	0.0896	As'			\rightarrow			
1	225	215.17	12.57	40.928	0.0932					4		
4	750	774.57	44.33	35.703	0.0915	HOH 36			±	~		
5	500	487.58	28.78	38.602	0.0925	34					-	
12	50	50.00	5.00	43.311	0.1043	32 <mark>-</mark>						
8	350	389.44	22.21	39.264	0.0941	0	0.2	0.4	0.6 0.8	81	1	1.2
15	1000	943.71	78.19	33.859	0.0445		Au	Target	Thickness	(µm)		

Asymmetry vs Thickness Run 2 versus Run 1 – Nominal Cuts

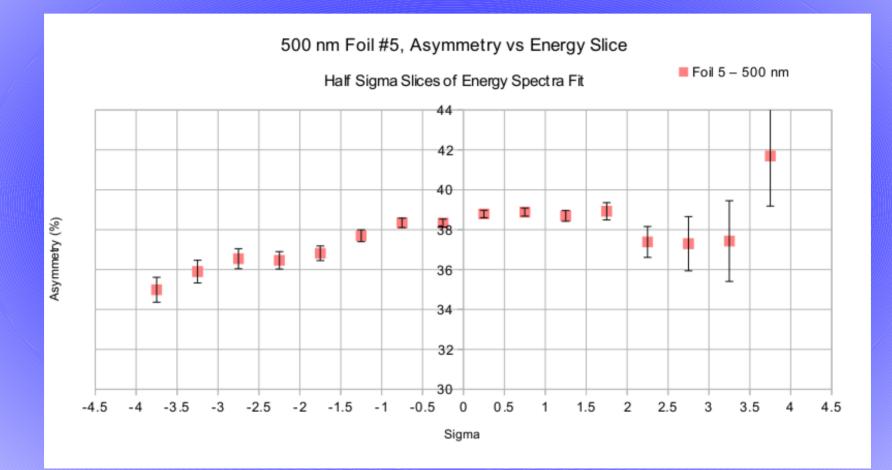
Asymmetry vs Thickness Run 2 versus Run 1 – Nominal Cuts



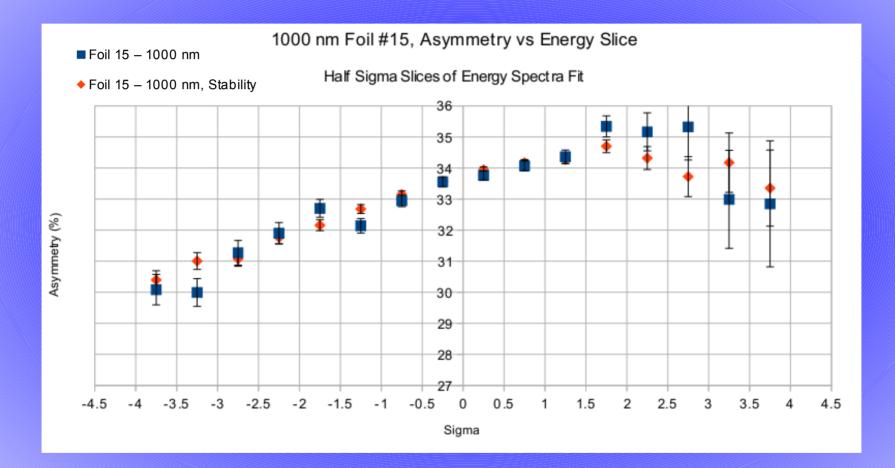
Asymmetry vs Thickness Run 2 versus Run 1 – Nominal Cuts


	F	Run 1			Ru	n 2	Asymmetry				
Target Ladder Position	Nominal Thickness (nm)	FESEM Thickness (nm)	d(FESEM Thickness) (nm)	Physics Asymmetry (%)	d(Asymr y) (%		Physics Asymmetry (%)	d(Asymmetr y) (%)	Percent Difference (%)	Run 2 within Run 1	Run 1 within Run 2
15	1000	943.71	78.19	33.774	0.080	1	33.817	0.0729	0.126	yes	no
3	870	836.76	48.76	34.622	0.078	2	34.828	0.0896	0.595	no	yes
4	750	774.57	44.33	35.618	0.0817		35.703	0.0915	0.240	no	no
2	625	561.18	37.24	37.246	0.0840		37.075	0.0758	0.460	yes	no
5	500	487.58	28.78	38.608	08 0.0825		38.602	0.0925	0.016	no	yes
14	350	389.44	22.21	39.185	0.0897		39.083	0.0944	0.261	yes	no
8	350	389.44	22.21	39.182	0.082	9	39.264	0.0941	0.209	yes	no
1	225	215.17	12.57	40.959	0.072	2	40.928	0.0932	0.076	no	yes
12	50	50.00	5.00	43.221	0.088	7	43.311	0.1043	0.207	no	no
13	50	52.03	5.99	43.506	0.087	2	43.310	0.1030	0.451	yes	no
15-stabili ty	1000	943.71	78.19	33.643	0.0614		33.859	0.0445	0.638	no	yes
$A_0 =$		A ₀ = 43.90	A ₀ = 43.90 ± 0.12		A ₀ = 43.97 ± 0.10 A_0		0.159	yes	yes		
				λ = 0.3117 ± 0.0098			λ = 0.3139 ± 0.0094 Lambda		0.703	yes	no
		chi**2/NDF = (0.548501		ChiSquared/NDF = 0	0.681686					

Asymmetry Depedence on Energy Cut

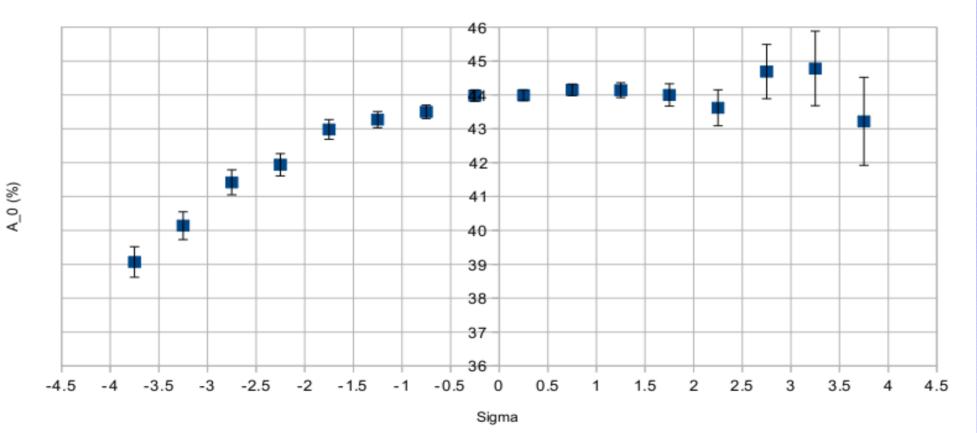

 Computed asymmetry for half-sigma-width slices from -4 to +4 sigma of the Gaussian ToF-cut Energy Spectra fit

Asymmetry Depedence on Energy Cut Thin Foil 13, 50 nm



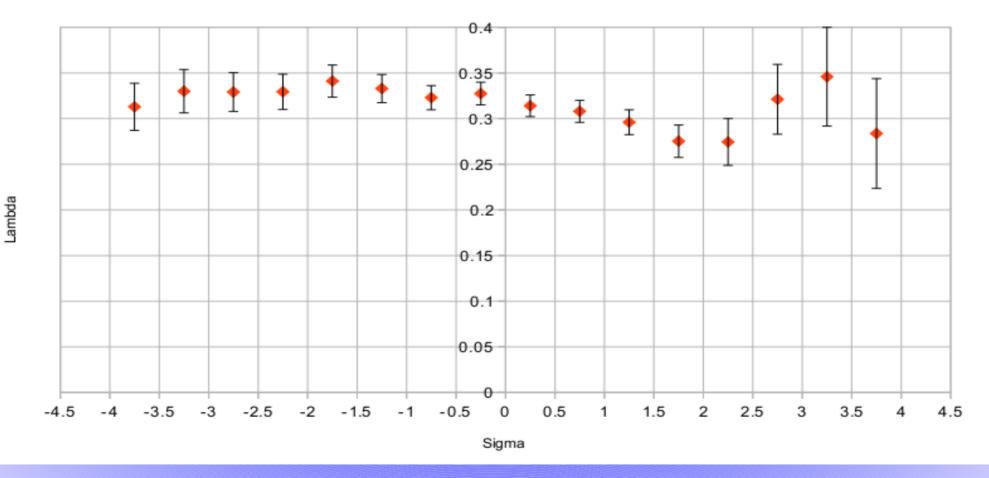
Asymmetry Depedence on Energy Cut Medium Foil 5, 500 nm

8


Asymmetry Depedence on Energy Cut Thick Foil 15, 1000 nm

Asymmetry Depedence on Energy Cut A_0

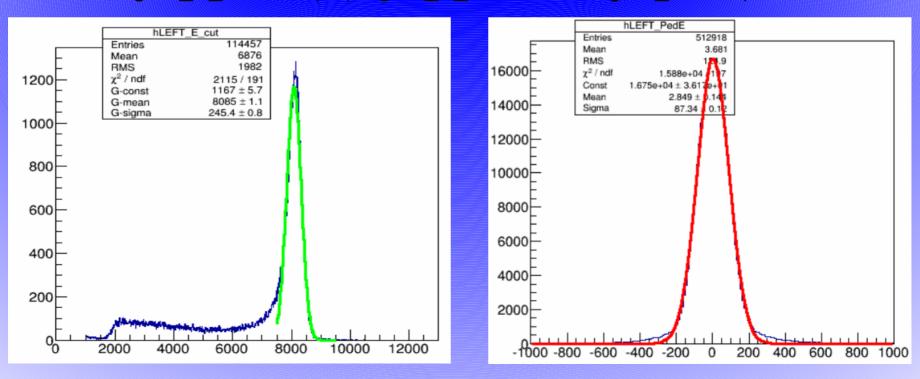
A_0 versus Energy Cut


Half Sigma Slices of Energy Spectra Fit $A(t) = A_0 / (1 + lambda * t)$

Asymmetry Depedence on Energy Cut Lambda

Lambda versus Energy Cut

Half Sigma Slices of Energy Spectra Fit A(t) = $A_0/(1 + \text{lambda} * t)$


Asymmetry Dependence on Energy Cut plots for every foil on wiki.

Asymmetry Depedence on Energy Cut

E-fit sigmas	A_0	d(A_0)	lambda	d(lambda)	Chi^2/NDF
-4 to -3.5	39.07	0.45	0.3129	0.0259	0.955
-3.5 to -3	40.14	0.41	0.33	0.0237	1.445
-3 to -2.5	41.42	0.37	0.3291	0.0213	0.751
-2.5 to -2	41.94	0.33	0.3293	0.0193	0.284
-2 to -1.5	42.98	0.29	0.3411	0.0176	0.394
-1.5 to -1	43.27	0.24	0.3329	0.0154	0.726
-1 to -0.5	43.5	0.2	0.3229	0.0132	0.613
-0.5 to mean	43.98	0.17	0.3274	0.0124	0.512
meanto 0.5	43.99	0.16	0.314	0.0119	1.921
0.5 to 1	44.15	0.17	0.308	0.0121	0.583
1 to 1.5	44.14	0.22	0.296	0.0137	0.574
1.5 to 2	44	0.33	0.2752	0.0177	1.12
2 to 2.5	43.62	0.53	0.2744	0.0256	1.178
2.5 to 3	44.69	0.8	0.3211	0.0383	0.616
3 to 3.5	44.78	1.1	0.3458	0.0541	0.789
3.5 to 4	43.22	1.3	0.2836	0.0601	0.891

Detector Energy Resolution – Energy Spread Corrected

- Energy Resolution = (mean / std dev) * 100 (%) of energy spectra
- Corrected for energy spread by fitting detector pedestal events in a detector when no Mott events in that detector – with a gaussian
- Taking sigma from pedestal fit, corrected E-spectra sigma and recomputed energy resolution

3

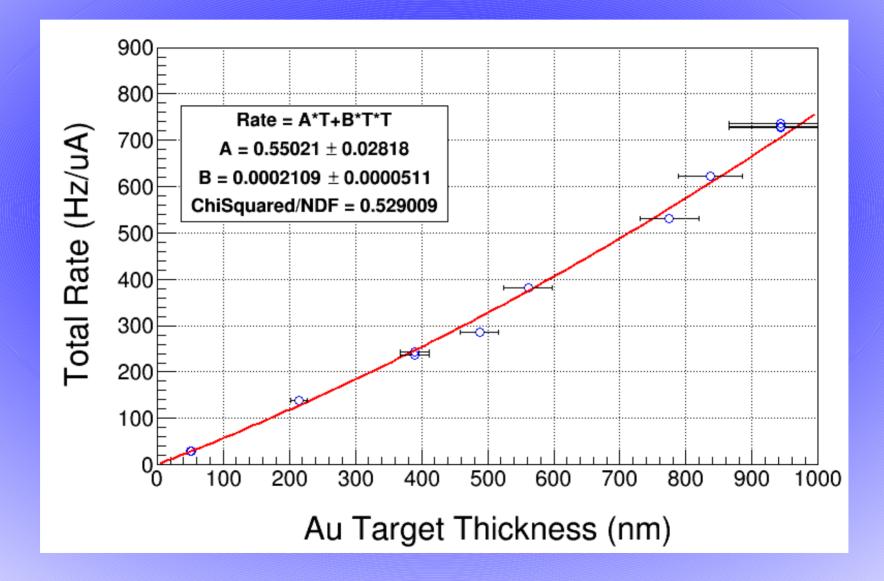
sigma E corr = Sqrt (Sigma E uncorr^2 – Sigma Ped^2)

Detector Energy Resolution – Energy Spread Corrected

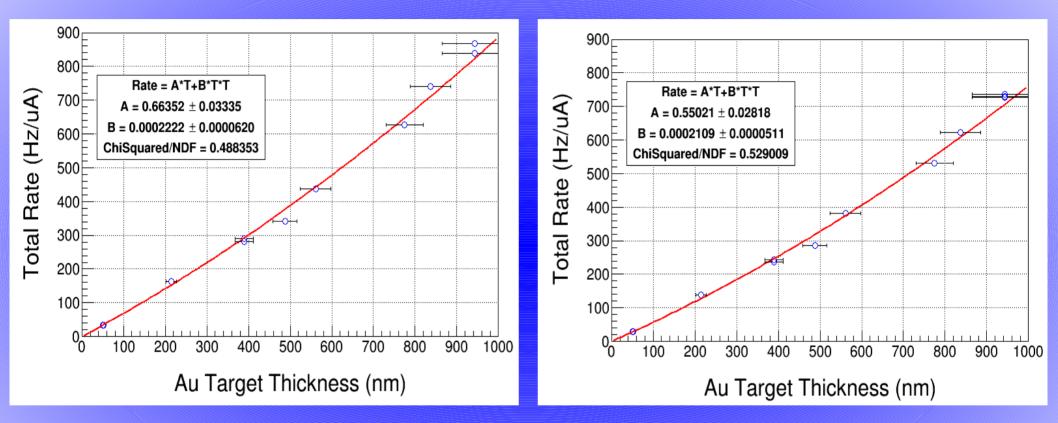
				Left	Detector	Right	Detector	Up	Detector	Down	Detector
Target Ladder Position	Nominal Thickness (nm)	FESEM Thickness (nm)	d(FESEM Thickness) (nm)	Energy Resolution, Before Pedestal Correction (%)	Energy Resolution, After Pedestal Correction (%)	Energy Resolution, Before Pedestal Correction (%)	Energy Resolution, After Pedestal Correction (%)	Energy Resolution, Before Pedestal Correction (%)	Energy Resolution, After Pedestal Correction (%)	Energy Resolution, Before Pedestal Correction (%)	Energy Resolution, After Pedestal Correction (%)
15	1000	943.71	78.19	3.040	2.842	3.595	3.062	3.515	2.974	3.326	2.940
2	625	561.18	37.24	3.045	2.848	3.592	3.055	3.565	3.016	3.330	2.942
13	50	52.03	5.99	3.332	3.111	3.927	3.320	3.819	3.220	3.656	3.239
14	350	389.44	22.21	2.999	2.793	3.563	3.010	3.529	2.965	3.289	2.901
3	870	836.76	48.76	2.997	2.795	3.550	3.006	3.538	2.976	3.285	2.899
1	225	215.17	12.57	2.988	2.783	3.546	2.994	3.534	2.969	3.299	2.912
4	750	774.57	44.33	2.996	2.791	3.556	3.004	3.529	2.964	3.303	2.917
5	500	487.58	28.78	2.979	2.776	3.538	2.986	3.499	2.936	3.284	2.898
12	50	50.00	5.00	3.323	3.090	3.925	3.298	3.824	3.205	3.659	3.237
8	350	389.44	22.21	2.961	2.758	3.517	2.960	3.494	2.927	3.235	2.842
15	1000	943.71	78.19	2.994	2.790	3.550	3.003	3.499	2.945	3.282	2.896

Average Change In Energy Resolution After Pedestal/Energy Spread Correction –Left : -0.207 %Right : -0.560 %Up : -0.568 %Down : -0.393 %

NOTE: The above table averages together runs on a given foil from the Run 2 Thickness 4 versus Asymmetry runs


Relative Rates Measurement Results

Single Runs, all with the same current of ~1.15 uA


				LEFT		RIGHT		UP		DOWN			
Target Ladder Position	Nominal Thickness (nm)	FESEM Thickness (nm)	d(FESEM Thickness) (nm)	Current (uA)	d(I) (uA)	Rate (Hz / uA)	dR						
15	1000	943.71	78.19	1.152	0.0118	178.28	1.85	177.97	1.85	187.43	1.95	186.17	1.94
15	1000	943.71	78.19	1.152	0.0118	178.53	1.91	176.20	1.89	186.34	2.00	186.35	2.00
14	350	389.44	22.21	1.149	0.0117	58.13	0.62	57.98	0.62	59.95	0.64	60.23	0.64
13	50	52.03	5.99	1.148	0.0117	7.16	0.08	6.99	0.08	7.32	0.08	7.46	0.08
12	50	50.00	5.00	1.149	0.0117	7.00	0.08	6.92	0.08	7.08	0.08	7.28	0.08
8	350	389.44	22.21	1.149	0.0117	59.14	0.63	59.11	0.63	62.15	0.66	62.79	0.66
5	500	487.58	28.78	1.149	0.0117	69.09	0.73	69.51	0.74	73.13	0.78	73.01	0.78
4	750	774.57	44.33	1.148	0.0118	131.41	1.40	128.68	1.37	136.25	1.45	134.04	1.44
3	870	836.76	48.76	1.151	0.0118	153.65	1.64	149.79	1.60	160.08	1.71	159.50	1.71
2	625	561.18	37.24	1.149	0.0118	94.15	1.00	93.14	0.99	97.73	1.04	97.71	1.04
1	225	215.17	12.57	1.150	0.0117	34.37	0.37	33.44	0.36	35.68	0.38	35.29	0.38
15	1000	943.71	78.19	1.150	0.0118	179.30	1.91	181.92	1.94	188.06	2.01	186.88	2.00

Relative Rates Measurement Results

Total Rate versus Thickness

Relative Rates vs Rates from Thickness vs Asymmetry Study

Rates from Asymmetry vs Thickness

Rates from Relative Rates Measurement