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HIGH RESOLUTION SECOND DIFFERENCE ANALYSIS OF PHOTONUCLEAR YIELD CURVES
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A critical evaluation of the problems involved in the high resolu-
tion analysis of photonuclear cross sections from bremsstrahlung
yield curves is presented. In particular, the effect of the analysis
bin width and the shape of the x-ray spectrum are considered. A
method is presented which circumvents the need to know the
shape of the spectrum at the high energy tip; the latter informa-
tion is contained in an effective energy resolution function that

1. Introduction

A large body of our experimental knowledge about
photonuclear processes come from studies undertaken
with the continuous radiation spectrum produced in
electron bremsstrahlung. The structure of these experi-
ments precludes any direct measurement of the cross
section of the photo-nuclear process under investigation.
Instead, these experiments measure a quantity propor-
tional to the bremsstrahlung weighted cross section or
more commonly the integral yield per unit of monitor
response. Measuring the integral yield at various values
of the maximum energy of the bremsstrahlung beam
generates a yield curve. and the reaction cross section is
then deduced from this yield curve, assuming that the
radiation spectrum for the experimental situation is
known.

The various procedures which have been proposed to
calculate the cross section from the measured yield data
are straightforward and discussed extensively in the
literature'). Although the cross section computed by
these analytical methods is unique, identification with
the physical cross section presumes a detailed know-
ledge of the yield function and the experimental radia-
tion spectrum. In practice, neither the yield function nor
the spectrum is known exactly. Invariably, the yield
function is known only to a reasonable degree of preci-
sion and only at a series of beam energies (K,), usually
separated by equal energy intervals, say 4 (bin width).
Hence. the cross section deduced from each measure-
ment is some kind of weighted average over the energy
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For this discussion a thick-target may be defined as one for
which multiple electron scattering effects are important but
which is still very much smaller than the range corresponding
to the incident electron energy.

does not enter in the analysis, but for a normalization factor. The
method, which is an iterative one, is based on taking the second
difference of the photonuclear yield curve and is applicable to
measurements made with bremsstrahlung in energy intervals less
than 200 keV. An analytic smoothing procedure is used. The
satisfactory performance of the method is demonstrated by the
analysis of three synthesized yield curves.

interval 4, where 4 is a measure of the experimental
energy resolution.

Now, aside from energy resolution considerations,
any difference between the assumed and actual radiation
spectra will be reflected in the values computed for the
cross section. The effect of a spectrum change on this
computed cross section will depend on the extent of the
disagreement between assumed and actual spectra, on
the energy resolution, and on the true variation of the
reaction cross section with energy. Generally speaking,
in most experiments using bremsstrahlung, the energy
resolution is nominally :MeV or greater and only the
gross structure of the reaction cross section in the giant
resonance region has been extracted. However, when
the photoreaction cross section is characterized by
discrete resonances having widths of the order of several
tens of keV and level separations of several hundreds of
keV, anenergy resolution comparable to or less than the
level widths is called for. Under such circumstances the
effect of a spectrum modification can be very great!-?).
Hence, in order to compute the cross section where sharp
resonances are involved, the radiation spectrum incident
on the sample must be known quite accurately. The
common practice of assuming a radiation spectrum
given by the extreme relativistic Born approximation
calculation (the so-called Schiff spectrum?)} is no longer
suitable. The thin-target or “intrinsic”” bremsstrahlung
spectrum must now be replaced by the appropriate
thick-target spectrum.t Modification of the intrinsic
spectrum produced by electron energy loss, electron
scattering in the radiator, and by the energy dispersion
of the primary electrons striking the radiator must be
considered. The problem is complicated still further by
the dependence of the bremsstrahlung cross section on

1) A. S. Penfold and J. Leiss, Phys, Rev. 114 (1959) 1332.
2) A. 8. Penfold and B. M. Spicer, Phys. Rev. 100 (1955) 1377.
3) L. L Schiff, Phys. Rev. 83 (1951) 252.
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the photon emission angle?). Consequently, the spectrum
shape is influenced, albeit slightly by the angle subtended
by the nuclear target at the radiator. For activation
experiments, this acceptance angle determines an effec-
tive X-ray target thickness somewhat greater than the
geometrical thickness of the radiator. A procedure for
evaluating the thick-target spectrum in terms of the
intrinsic spectrum is available*), but has not been widely
used since the detailed shape of the bremsstrahlung
spectrum in the immediate vicinity of the high energy tip
has not been satisfactorily predicted®). Consequently,
high resolution cross section analysis of bremsstrahlung
yield data by conventional techniques has not been
attempted over a large energy region.

Up to the present, fine structure in photo reaction
cross sections has been inferred from two main types of
experiment. Where the reaction products are charged
particies, these have been recorded in nuclear emulsions.
These experiments suffer from the limitations imposed
by statistical accuracy and energy resolution, the latter
being in general several hundred keV for protons. Acti-
vation experiments on the other hand give a well-defined
yield curve from which fine structure has often been
successfully inferred from relatively sharp changes in
curvature of the yield curve. From this procedure are
obtained the so-called breaks which first indicated the
extent of level absorption in oxygen, carbon and other
light nuclei. It is now realized that this approach can
only provide unambiguous information about level
structure in restricted situations, viz., in the region of a
few million electron volts above the reaction threshold.
Forthe determination of structure in the giant resonance
region, there is no substitute for a complete cross section
analysis such as the one to be described below.

In view of the above mentioned difficulties we have
developed a new method for the analysis of high resolu-
tion bremsstrahlung yield data which has significant
advantages over previous methods. For the latter it is
essential to know exactly the relative number of photons
in each energy bin right to the high energy tip of the
spectrum. A significant error in this number for the
uppermost bin, for example, produces a corresponding-
ly serious error in the computed cross section. In the
present method, which is an iterative one, this difficulty
is overcome by replacing the detailed shape ar the 1ip by
an effective resolution function, based on the variation
of the spectrum with energy over several bins in the tip
vicinity. Since the integrated area rather than the de-
tailed shape of this effective resolution function is of
primary significance in the subsequent cross section
analysis, the exact shape is not required at the spectral
tip. A sufficiently precise estimate of this shape may be
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inferred from a knowledge of the expected behaviour of
a thick target spectrum in this region, together with an
experimental measurement of this spectrum, even
though the latter is almost always of limited statistical
accuracy owing to the inherent difficulty of the measure-
ment. At photon energies removed from the tip, the
shape is assumed proportional to the theoretical brems-
strahlung cross section.

The general principles of the present second-difference
method (s.d.m.) have already been published by Geller®).
The s.d.m. involves the calculation of second differences
of the yield and spectrum functions. It is applicable to
photonuclear yield curves measured with thick-target
bremsstrahlung in energy intervals less than the energy
loss equivalent of the bremsstrahiung target thickness
(approximately 200 keV). It has been used to produce
the O!%(y,n)O'’ cross section from threshold to
17.5MeV in 34keV steps, and from threshold to 23 MeV
in 68 keV steps’).

In sec. 2 a brief outline of the general procedure of
cross section analysis is summarized, followed by details
of the second-difference method in sec. 3. In applying
the s.d.m. to actual yield curves, it is desirable to damp
out fluctuations due to statistical uncertainties. This is
achieved by using an analytical smoothing procedure
outlined in sec. 4. A test of the general procedure is
discussed in sec. 5 where hypothetical yield curves are
generated and subsequently analyzed allowing for the
effects of statistics. In sec. 6 the photoneutron cross
section for O'6(y,n) is presented.

2. Transformation Method of Cross Section Analysis
2.1. INTRODUCTION

In this section we review briefly the transformation
method of cross section analysis originally proposed by
Spencer®) and elaborated in a matrix formulation by
Penfold and Leiss'). Although equivalent to the “total
spectrum’ and “‘photon difference” methods, the trans-
formation method provides a clearer understanding
of the problem and is fundamental to the present
method.

The yield, Y, of a photonuclear reaction measured
with electron bremsstrahlung extending to energy K is
related to the reaction cross section a(k) by the integral
equation
4) A. 8. Penfold, University of Illinois Report (unpublished).

5) E.g. the attempt of R. J. Jabbur and R. H. Pratt, Phys. Rev.

129 (1963) 184 and references herein.

6) K. N. Geller, Phys. Rev. 120 (1960) 2147.
7) K. N. Geller and E. G. Muirhead, Phys. Rev. Letters 11 (1963)

371.

8) L. V. Spencer, National Bureau of Standards Report, No.
1531, (Washington, D. C., 1952).
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where a(k) is the cross section at energy k; exp (—u, X)
estimates the photon absorption in the radiator, sample
and other material interposed between sample and ra-
diator; g includes the target and efficiency factors; and
M(K,), the monitor response function normalizes the
spectrum N(k,K,). Instead of the number spectrum,
N(k,K,), it is more convenient to use the corresponding
intensity spectrum @(k,K;) which is to a good approxi-
mation “shape-independent” for the energy range of X,
used. Equation (1) is then to be solved for the reduced
cross section

s(k) = a(k) exp (— mx)/k €]
according to the equation

K

Y(Ko) = f " dks()@(k, Ko) , 3)

Q
where the reduced yield y(K,) = Y(K,). M(K,)/g.
Equation (3) can be solved exactly for s(k) assuming
that both the yield function and the radiation spectrum
are known. Operate on both sides of eq.(3) with an
appropriate transformation function 7(K,, E;) where
T =0 for K, > E,. T will be chosen so as to transform
the spectrum to a d-function spectrum*.
The relation between the transformed yield y and the
cross section is now prescribed by the transformed
spectrum

v = |

Eg Ko
= f dK, f dks(k)®(k, Ko)T (K, Eo) ,
] 0

Eq
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since P(k, Ky) = 0 for k > K, we can write

e = |

where the transformed spectrum @ is defined by

" dks(kyd(k, Eq) | )
1]

Ep
& (k,E,) = f , dKo®(k, Ko)T(Ko E))  (5)

and merely expresses the fact that & is obtained by
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taking a linear combination of @’s for various values of
K, .For a given ®,eq.(5) is solved for the transformation
function T(K,, Ep). Thus for &k, E,) = 8(E, — k) (delta
function), the yield transformation immediately gives
the reduced cross section, s(£,). In practice, eqs.(4) and
(5) are solved numerically by matrix methods; T is then
the inverse of the spectrum matrix for a delta function
transformation.

2.2. CHOICE OF SPECTRUM

Now, the solution, s(k), will differ from the true
reduced cross section, X(k), if the assumed spectrum does
not correspond to the actual experimental situation. In
practice, the intrinsic spectrum, ¢(k,K}) is often used in
place of the experimental spectrum $(k,K,), and the
transformation function T(K,,E,) appropriate to
oplk, K,) is used to solve for s(k). The departure of s from
Z depends on the nature of the spectrum generating
function, S(K{,K,) as defined by Penfold*), where
S(K{, Ky) =0 for K > K, and

Ko

P(k,Ko) = f ok, Ko)S(Ko, Ko) dKp . (6)
0
Operating on both sides of eq. (3) with T(K,, E,) with @
given by eq.(6) and s(k) replaced by X (k) we obtain’
~ E,
WEq) = f
where the modified transformation function 7', is given
by
Eo
TI(K(,)aEO) = f dKOS(KE»KO)T(KOs Eo) . (8)
o

o Eq
de(k)f dKoo(k, Ko)T (Ko, Eo),  (7)
Q

0

The solution obtained using ¢(k,K,) is given by

Eo .
H(Eo) = | dks(l)g(k, Eo) )
where
Eo
@(k,Eg) = f dKop(k, Ko)T(Ko, Eo) -
4]

Comparingeqs.7 and 9 with ¢ a delta function we obtain

Eq Eo
) = [ akz(o [ Ryt KTy (Ko ). (10
0 0
Thus, the cross section computed with the intrinsic
* QOther choices of T are possible, e.g. transformation to a
spectrum Xl(k, Ky) = const. leads to a solution for the inte-
grated cross section.
The effect of a spectrum change on the monitor response func-
tion is not very large and is not considered in the present dis-
cussion. For further details consult ref. 1.
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spectrum is a weighted average of the true cross section
(k). If thick-target effects are primarily responsible for
the spectrum modification, then S(K{§, K,) spans a small
energy range K, — K,~0, where 0 is a measure of the
effective target thickness*). A large error will be intro-
duced into the cross section computed with the intrinsic
spectrum if the cross section exhibits sharp structure in
an energy interval of order 4.

This is particularly true of light nuclei?), i.e. 4 <40.
In such cases the effect of a spectrum change is quite
farge.

3. Description of the Present Method
3.1. GENERAL DISCUSSION

In the previous section we showed that for the general
transformation method a modification of the radiation
spectrum in the immediate vicinity of the spectral tip can
have a serious effect on the cross section computed from
photonuclear yield data. Although the problem is
solvable, given the modified thick-target radiation
spectra, the computational labor involved in generating
thick-target spectra is considerable.

Rather than proceed along these lines, we have
developed a rather simple method of analysis which is
not sensitive to the spectrum details in the immediate
vicinity of the tip. Suppose in eq.(5) we separate the
transformed spectrum @ into two parts

B(k, Eo) = b(k.Eo) + (K, Eg), (1)
where (I;, is equal to @ for values of k in the immediate
vicinity of the spectral tip, i.e. k~FE,, and zero else-
where; while 5, is zero in the immediate vicinity of the
tip and equal to @ at photon energies removed from the
tip, i.e. k < E,. Then, for any arbitrary transformation
function, 7(K,, Ey), only @, is determined by the
spectrum in the tip region. On substituting eq.(11),
eq.(4) reduces to

_ Eo
) = so(Bo) = | L stk o), (12

where s(k,) is the reduced cross section averaged over
P (k,Ey)

Ep
s(k) = f dks(k)@,(k, Eg)/ W(4) (13a)
o
so(Eq) = y(Eo)/W(4) (13b)
Mk,Eq, 4) = @ (k,E)4]/W(4) (13c)
and
Eo
W(A):f @ (k, Ey) dk (13d)
[¢]
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The explicit dependence of the residual term 4 on bin
width 4 will soon become apparent. Equation (12) can
be solved by iteration for s(k,) provided &5, is known.
Since <1~>, is determined by the radiation spectrum at
energies removed from the spectral tip, it can be cal-
culated to sufficient accuracy for use here from the
bremsstrahlung cross section given by Bethe-Heitler®) or
Schiff?). -

Now, if the s(k,) computed from eqs.(13) is to bear
some semblance to the actual cross section, then <5,(k,
E,;) must assume the form of a suitable resolution
function, say large and positive for values of k near Ej.
The exact behavior of ® of course, is determined by the
transformation and the detailed shape of the spectrum
near the tip. A detailed description of 47),, however, is not
necessary to calculate the average cross section. An
empirical description of the spectrum tip shape is ade-
quate to deduce the resolution function provided @ gocs
to zero at the tip as isexpected for a thick target spec-
trum.

3.2. CHOICE OF TRANSFORMATION FUNCTION

The choice of an appropriate transformation function
is fundamental to the analysis. We require of the trans-
formation that it be simple, generate a resolution func-
tion with desirable characteristics, and de-emphasize the
contribution to s(k) from the iterative term, i.e. 1 < 1 for
all values of k. The transformations we shall consider are
the first and second difference of the radiation spectrum
over an energy internal A. The transformed spectra
D(k,Ey) or weighting functions are defined by

First difference weighting function (f.d.w.f.)

D'(k,Ep, 4y = O(k,Eq + 34) — &(k,E, — 34), (14a)

Second difference weighting function (s.d.w.f.)

(k,Eo,4) = B(k,Eq + 4) — 20(k, Eo) + P(k,E, — 4)
(14b)

The corresponding transformed yields are the first and
second differences of the reduced yield, respectively. The
dependence of each weighting function on £, and 4 is
explicitly noted in egs. (14). These functions are cal-
culated for an intensity distribution of the simple form
Dk, Ey) = A(Ey — k)" forn=0,0.5and 1.0. The results,
shown in fig. 1, are plotted as a function of (E; — k)/4;
thus plotted, each weighting function is found to be
independent of £; and 4. The actual spectrum, of course,
will differ from these. However, in the immediate vicinity

9) H. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146
(1934) 83.
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Fig. 1. Weighting functions for the bremstrahlung intensity dis-
tribution @ = Ag(E-k)» for n = 0, 0.5 and 1 as defined by (14a)
and (14b).

of the spectral tip, the simple power law behavior is a
close approximation to the actual target spectrum'?).

We conclude from fig.1 that if 0 <n<0.5, a first
difference of the yield curve should approximate the
actual cross section, whereas, for 0.5 < #n <1, the second
difference of the yield curve is to be preferred. For actual
spectra, these conclusions will be modified by the
dependence of each weighting function on bin width, 4,
particularly for large 4.

10) H. W. Koch and J. W. Motz, Rev. Mod. Physics 31 (1959)
920.
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The appropriate transformation for the analysis was
deduced from the following considerations; (1) exami-
nation of the first and second difference of a representa-
tive yield curve measured in small energy intervals, and
(2) an experimental determination of the spectrum iso-
chromat at 15.12MeV. The latter was measured by
scattering photons elastically from the 15.12MeV level
of C'2.

In fig. 2 we show (a) the yield curve’) of the reaction
0'%(y,m0'® measured in energy intervals of 17keV
from threshold to 17.5MeV ; (b) the first difference of the
yield curve for 4 = 68keV; and (c) the second difference
of the yield curve for 4 = 68keV. Four independent sets
of first and second difference curves are calculated from
the interlaced sets of yield data. It is evident from fig.2
that the second difference transformation is more ap-
propriate than the first difference; the latter bears a
closer resemblance to the integrated cross section. In
neither case do we obtain the actual cross section or its
integral, since the transformation we have used is only a
first order approximation to the exact solution of the
problem.

The conclusion drawn from the analyzed yield data is
supported by our isochromat observation. The yield of
15.12MeV photons scattered elastically at 120° from a
carbon target is shown in fig. 3. A least squares fit of the
yield data to A(E, — k)" (solid curve) gives a value of
n=~0.6. This result favors the second difference trans-
formation.

The first and second difference of the spectrum iso-
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Fig. 2. (a) Yield curve of the reaction O6(yn) from thresholds to 17.5 MeV taken from ref. 7; (b) the first difference of fig. 2a) with
.1 =168 keV; (c) second difference of fig. 2(a) for 1= 68 keV.
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BLE, 1512 NRelative)

05 10 i5 20
(Eqm15.12 ) MV

Fig. 3. Experimental bremsstrahlung isochromat obtained from
the elastic scattering of 15.12 MeV photons from carbon. The
dashed curve is the spectrum calculated from ref. 9.

chromat will lie intermediate between the weighting
function shown in fig. I for n = 0.5 and 1.0. Since the
isochromat represents the yield curve for a d-function
cross section, it is clear that the second difference of the
isochromat closely approximates to the shape of the
input cross section with two modifications. Firstly, the
width of the peak in the s.d.w.f. shows the effect of the
finite resolution of the method, and secondly, the nega-
tive overswing must be removed by an iterative proce-
dure. (See eq. (13), sec. 3). The dashed curve in fig. 3
represents the isochromat at 15.12 MeV evaluated from
the Bethe-Heitler bremsstrahlung cross section®) nor-

] T 7 T T T T

Legend B
— SDWF from Experimental
Isochromat .
—~~-=-SDWF from B—H Spectrum.

L

RN S B e S

D" (Relative )
—

(Egk) /D
Fig. 4. Comparison of the s.d.w.f. obtained from the experimen-
tal determination shown in fig. 3 (solid curve) with that obtained
from the spectrum calculated from ref. 9 (dashed curve).
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malized to the experimental result at 16.5MeV. The
overall agreement of experiment with the Bethe-Heitler
prediction is remarkably good.

Because of this agreement between our empirical iso-
chromat and the Bethe-Heitler cross section, the latter is
used to compute the s.d.w.f. In fig. (4) we compare the
s.d.w.f. suggested by experiment (solid curve) with the
Bethe-Heitler expression evaluated for (E,,4) = (17.5,
0.068)MeV (dashed curve). The two curves are nor-
malized at £, — k = 0. The difference between the two is
not great; the Bethe-Heitler result gives a slightly larger
negative overswing and a reduction in the low energy
tail and has so far proved to be the most satisfactory
s.d.w.f. for analysis.

The dependence of the s.d.w.f. on E, was investigated
using the Bethe-Heitler expression for the bremsstrah-
lung intenstiy. For a given value of (£, — k)/4 the abso-
lute value of s.d.w.f. decrease monotonically with
increasing E,. A factor of 3 change in £, (10 to 30 MeV)
changes s.d.w.f. by no more than 1% for all values of
(Ey — k)/A. Therefore, the s.d.w.f. dependence on E, can
be neglected without contributing a significant error to
the computed cross section. Equation (12} is thus solved
for s(k) by an iteration procedure sliding the s.d.w.f.
along the abscissa as E, is varied.

The dependence of s.d.w.f. on bin width, 4, was also
investigated using the Bethe-Heitler expression. At a
given value of (E, — k)/4, the absolute value of s.d.w.f.
increases monotonically with increasing bin width. It is
significant to note here that the behavior of the f.d.w.f.
using the Bethe-Heitler expression, is just the converse,
i.e. the low energy tail decreases with increasing bin
width. This result is consistent with the empirical obser-
vation that the first difference of photonuclear yield
curves over energy intervals of about 0.25-0.5MeV
closely resembles the actual cross section. Hence, the
significance of the residual term in eq. (12) is reduced by
taking the s.d.w.f. when 4 < 0.25MeV, whereas when
4> 0.25MeV the f.d.w.f. is preferable. Application of
the f.d.w.f. to an iterative solution of s(k) from poor
resolution photonuclear yield data (4 =0.5MeV) was
carried out by Carver and Lokan'").

4. Actual Calculational Procedure
4.1. INTRODUCTION

The statistical uncertainties inherent in experimental
yields is reflected in the computed cross section, and is
often responsible for excessive, non-physical oscillations
of s(k). Since both the actual s(k) and the radiation
spectrum are expected to be inherently continuous
functions of the energy, the experimental data has been
11) }. H. Carver and K. Lokan, Aust. J. Physics 10 (1957) 312.
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smoothed before attempting to compute s(k). Smoothing
of the experimental yield ordinates, whether subjectively
by eye, or objectively by analytical procedures, damps
out the non-physical oscillations with some sacrifice of
energy resolution. In essence, smoothing the input data
improves the real to spurious structure of the final result
(“signal to noise ratio”’) by reducing the energy resolu-
tion (the “bandwidth”). Therefore, we have adopted the
analytical smoothing procedure'?) of piecewise least
square fitting of the yield data over a limited energy
interval.

4.2. SMOOTHING PROCEDURE APPLIED TO THE PRESENT
PROBLEM

In the present problem the yield data is fitted to a
quartic function over an energy interval encompassed
by 7 adjacent points (M =7). The order, n, of the
fitting polynomial (Za,x") and the fitting interval
(M —1)4 are not completely arbitrary, but related to
the actual shape of the cross section. When sharp
resonant structure is present in the cross section, then
the quartic is a reasonable fitting function since it
allows for points of inflection of the yield curve. The
fitting interval determines the number of degrees of
freedom (M —n) and is selected to give an acceptable
resolution. The general smoothing procedure is given
in the appendix.

The s.d.w.f. and the corresponding smooth yield
function, are each obtained as a linear combination of
several @(k, E}) and y(E}) respectively with coefficients
given by the appropriate terms of the smoothing
matrix. Specifically, for the problem at hand (see
appendix, eq. (33)). The s.d.w.f. takes the form

2 1
@"(k, Eo) = ?m; & amPmlk) (15a)

where @,, = &k, £, + (m —4)4) and &3, is obtained
from table 2(a). Likewise, the second difference yield
function is given by

7

g 2
y'(Eo) = Vi P

m=1

3m¥m (15b)
where
Ym =Y [EO + (m - 4)A]

The s.d.w.f. evaluated for the Bethe-Heitler intensity
distribution is shown in fig. 5 for (£,, 4) =(17.5, 0.068)
MeV. This result does not differ significantly at the high
energy tip from the s.d.w.f. obtained using the spec-
trum shape predicted by the empirical isochromat.

12) B. C. Cook, Phys. Rev. 106 (1957) 300.
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(Eg k17D

Fig. 5. S.d.w.f. for the Bethe-Heitler intensity distribution (ref. 9)

for (Ep,4) = (17.5, 0.068) MeV with smoothing (7 points to a

quartic function). The resolution function is shown as the shaded
region.

The calculational procedure for s(k) is the same as
before but with the transformed yield and spectrum
replaced by their smoothed equivalents, (shown in bold
face type). Equations (12) and (13) reduce to

o (5 dic
R = solE) = | 0Bty (16)
o

where )

Eg
s(k) = f dks(kyp,(k, Eq)/w(4)  (17a)

4]
S(Eo) = ¥'(Eo)/w (4) (17b)
Mk, Eg, 4) = @l(k, Eg)A{w(A) (17¢)

Eo’
w(d) = f ®/(k, Eo) dk (17d)
and °

Ey=FEq + (M — 14 (17e)

We select as our resolution function, ¢@'(k, E,), the
s.d.w.f. contained in the interval —24<E,— k<4
(see fig. 5, shaded region). The remainder of the
(smooth) s.d.w.f. constitutes the residual weighting
function Alk, £, 4)¥

* A minor complication in computing with eq. (16) arises from
the existence of the negative overswing in front of the resolu-
tion function (bin* — 3 in fig. 5). This is circumvented by
setting up an iterative procedure such that on the first pass on-
ly, this bin is set to zero. On subsequent passes, therefore, there
exists estimates of s(k) for all k. The estimates for s(k) rapidly
converge and three of four passes suffice. This difficulty can be
avoided by adopting for the smoothing procedure a five point
fit to a cubic function (table 2b) instead of the seven point fit to
a quartic function discussed in this paper.
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Equation (16) is solved for s(k) by iteration. The in-
tegral term on the right side of this equation is replaced
by its numerical equivalent X, {s(k)) {A(k, E,, 4))
where (s(k)> and (1) are the average values of the
cross section and residual spectrum in the interval 4.
The energy corresponding to s(k) is given by the
centroid of the resolution function, i.e. k = E; + 4.

5. Test of the Method

As a consequence of choosing the s.d.w.f. as the
transformed spectrum, it is found that the relative
shape of the s.d.w.f. remains the same to within 1-2
percent as the peak energy F, is altered over a wide
range, say 15-25 MeV. It is desirable to make an exami-
nation of the combined effect on the solution for the
cross section of (a) the choice of s.d.w.f., its effective
resolution function, and (b) the statistical variations of
successive yield points and the possibility of generating
spurious structure in the output data. Accordingly the
following thought-experiments were devised.

Test 1. A (y, n) cross section curve as a function of
photon energy was obtained by adding four Breit-
Wigner level cross sections whose parameters closely
match those of the O'8(y, n) experimental data. The
level parameters are listed in table 1. The curve so

TABLE 1
Level parameters chosen for imput cross section for test 1
Peak energy Peak cross Level width
(MeV) section (MeV)
16.23 1.67 0.032
17.14 i 3.54 0.045
17.305 10.94 0.090
17.55 1.7 0.500

generated from threshold at 15.6 MeV to 18 MeV in
0.034 keV intervals is shown in fig. 6a.

Test 2. The input cross section, shown in fig. 6b, was
taken as a parabola of the form o(E) = ¢ +2¢2 where ¢
is equal to the difference between the photon energy £
and the threshold, £Fr =15.6 MeV.

Test 3. A linear combination of the two input cross
sections was taken to simulate a set of resonances with
a continuum background and is shown in fig. 6c.

The corresponding yield curves are shown in fig. 7.
These were generated from the respective cross sections
according to the usual prescription as given by eq. (3)
using the Bethe-Heitler bremsstrahlung spectrum®)
which was calculated for each value of k£ and K. A set
of yield curves typical of actual experiments were
derived from those of fig. 7 by defining the statistical
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Fig. 6. Input cross section curves for the three test runs. (a) Four

Breit-Wigner levels, whose parameters are given in table 1, (b)

“continuum’ cross section of parabolic form, (c) admitture of
cross sections given in (a) and (b).

level of accuracy of, say, the highest energy point. This
was taken at 300000 counts throughout. Each yield
point y, was scaled up accordingly and its variance o2
was assumed equal to y,, no other sources of variation
being considered. For each simulated yield curve, a
Monte Carlo method was used to compute the devia-
tion f,0, of each yield point y, +f,0, from the “true”
yield y,. A random number generator was used to
select the magnitude and sign of f, consistent with a
normal error distribution. In this way a set of 6-10
completely independent yield curves embodying statis-
tical fluctuations was generated for each test.

It is of incidental interest to observe the positions of
“breaks” on these curves. In the favourable case of the
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Fig. 7. Yield curves generated from the cross sections shown in
fig. 6, (a) for test 1, (b) for test 2, and (c) for test 3.
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Fig. 8. Typical cross section curves obtained by the second dif-
ference method, (a) for test 1, (b) for test 2, and (c) for test 3.
Each curve is obtained from the input cross section (fig. 6) con-
voluted with the s.d.w.f. resolution function. Solid error bars
represent the standard error of the cross section obtained by pro-
pagating the variance through the second difference method.
Dashed error bars represent the standard error obtained from the
6 to 10 independent yield curves.

first narrow level at 16.23, the break provides useful
information. Such is not the case for the levels at
17.14, 17.31 MeV, and 17.5 MeV.

The yield curves were then analyzed by the s.d.m.
yielding the result shown in fig. 8. Each cross section
curve, it must be emphasized, was obtained with a
s.d.w.f. compiled for only one value of K, viz. 17.51
keV, which was slid up or down. Resonance broadening
of the cross section curves emerging from the s.d.m.
shows the effect of the resolution of the method. This
resolution function, shown in fig. 5, is convoluted with
the input cross section to give the resultant curve shown
in fig. 8. The agreement of the latter with the points
from the s.d.m. is excellent.

The standard error computed by propagating the
variance of each yield point through the various opera-
tions of the s.d.m. is shown for representative points by
solid bars in fig. 8. On the other hand, external standard
error computed from the dispersion of the analyzed
cross sections for the 610 independent yield curves is
shown by broken vertical lines on fig. 8. In general
this latter error is less than, but not inconsistent with
the former.

The results of test I,
indicate the satisfactory nature of the d;(-portion (the
resolution function) of s.d.w.f. for the analysis. Tests 2

confined to four levels only,

and 3 show that the d;, portion of s.d.w.f. adequately
predicts the cross section emerging from the s.d.m.

K. N. GELLER AND E. G. MUIRHEAD

since the @ now has to operate on a sizeable cross
section from threshold to the energy K. In fact, it
adds an integrated weighted contribution of the cross
section from threshold to K.

These three tests indicate the adequacy of s.d.m.

6. Photoneutron Cross Section for O5(y, n)

The s.d.m. has been successfully applied to analyse
the O'é(y, n) cross section from 15.6 to 23 MeV. The
results of the analysis from 18 to 23 MeV are shown in
fig. 9. The smooth curve represents an analytical fit to
the analysed cross section obtained by convoluting the
s.d.w.f. resolution function with a linear superposition
of Breit Wigner levels taken to synthesize the actual O'®
(y, n) cross section. Additional fine structure over that
previously observed is accounted for by the improve-
ment in the energy resolution of this method of ana-
lysis. The overall agreement with other obsrevations
on O'® has been discussed in ref. 7.
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23 MeV. Analysis bin width, 4E=68 keV. Resolution (sec
inset fwhm = 136 keV.
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7. Conclusion

The s.d.m. for the analysis of bremsstrahlung yield
curves has been shown to produce an effective cross
section with energy resolution superior to any previous
method. It has the advantages of having (1) a fairly
well defined resolution function, and (2) of giving im-
mediately in the second difference of the yield curve a
good indication of the nature and type of resonant
structure present. Computations were performed on an
IBM 1620 computer without unduly long computing
time.

Appendix
CALCULATION OF SMOOTHED SECOND DIFFERENCES OF
THE YIELD AND SPECTRUM

A polynomial of degree n is piece-wise fitted to M
yield ordinates where M is an odd integer, over a
suitably chosen energy interval, symmetrically disposed
about the central energy, E,. The expression for the
smoothed yield at some energy £, near E, is

n

Y(Eon) = Y. 4(EqMEq — Eon)
i=o
where E, —1d < F,,, < E, +1d, and d is the smooth-
ing interval. The o, (E;) are determined by a least
squares analysis. When the yield ordinates are ob-
served at equal energy intervals, 4,

(18)

n

Y(E,,) = ZO 2{Eq)d’ { (Eq — Egn)(d } . (19)
=
Equation (19) can be replaced by an equivalent ex-
pression in matrix representation which facilitates the
general solution. Relative to the center energy E,, the
energy coordinates may be specified by the index m
running from 1 to M, thus

Eo — Eom
4

M+ 1
=m-— —5— (20)
and

Y(Eom) — Y, . (20

M = djA +1 gives the number of ordinates to be fitted.
Equation (19) is equivalent to

n+1
Ym = Z ﬁkékms (22)
K=1
where
B = “k—l(Eo)Akfl
and

im = (Eg — Equ/ )71 = {m — ¥(M + D }71.(23)

The f, are obtained by the least square procedure of
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minimizing the sum of the squares of the ordinate
deviations

M n+1 2
> [y,,, -3, Bkékm] = minimum ,
m=1 k=1
where y,, is the reduced yield. The minimization pro-
cess leads to a set of simultaneous equations

n+1

M
Zl Eim¥m = Z BiRu » (24)
m= k=1

where the R matrix is defined by the direct product of
the & matrix:

M M
Ry = Zl Cimbim = Zl {m—-—4M+ 1) }k+!~2. 25)

The R matrix is a symmetric matrix of simple form with
the following properties:

R, =0 for k + 1 odd (26)
HM-1)
Ry=2 % V2 for k+1 even. @n
V=0
The solution of eq. (24) for f§, is straightforward;
M
b= 2 Limbm (28)
m=1
where
M
S km = Z Rl;"ilm (29)
1=1

and is defined as the “smoothing matrix”. From the
definition of the R matrix, it immediately follows that

M

Y Fimbim = 6 (Kronecker 6 function) . (30)
m=1

In terms of the ¥ matrix

1 M
o (E)) = — )
k—1 0 A

k=1 &
m=1

,ka m¥m

O o
Z S Egy Egu)V(Egm)

= = .
4 1m:l

€1))

and the gth derivative of the yield function evaluated
at Ey is just glx (E,).

The smoothing matrices for (M, n)=(7,4) and
(M, n) =(5,3) are given in table 2. The (k —1) deriva-
tive of the smooth yield is obtained by taking the
matrix product of the kth row of .¥ with the column
matrix y,,.

The integral equation (21) connecting the trans-
formed yield, here taken as the second difference of the
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TABLE 2(a)
Smoothing matrix ¢# for (Mn) = (7,4)
(7 point fit to a quartic function)
& is defined by eq. (26)

0.0216450 = —0.1298700 ‘ 0.3246753 0.5670996 0.3246753 —0.1298700 0.0216450
0.0873016 ‘ —0.2658730 i —0.2301587 | 0 } 0.2301587 0.2658730 i —0.0873016
—0.0492425 : 0.2537878 —0.0719697 ' —0.2651514 | —0.0719697 0.2537878 —0.0492425
—0.0277778 0.0277778 ‘ 0.0277778 0 —0.0277778 —0.0277778 0.0277778
0.0113636 —0.0265151 ‘ 0.0037879 0.0227273 0.0037878 —0.0265151 0.0113636
! i o i _ b
TABLE 2(b)
Smoothing matrix & for (M,n) = (5,3)
. i T
—0.0857143 ‘ 0.3428571 1 0.4857143 ,‘ 0.3428571 —0.0857143
0.0833333 [ —0.6666667 | 0 i 0.6666667 —0.0833333
0.1428571 ! —0.0714286 —0.1428571 I —0.714286 0.1428571
—0.0833333 | 0.1666667 0 —0.1666667 0.0833333
! ) i _
yield, to the spectrum is now replaced by the equivalent . 2 Fotid . ,
Y(Eg) = - , Z & 3(Eq, Eo)y(Ep) - (33)

expression

Eo+4d
Y(Eo) = f , dks(k)p"(k, Eq) (32)
where @”(k, E,) is defined below. In terms of the
smoothing matrix %, y"(E,) is given by

M

p 2
,V(Eo)=?2=5”

m=

3m¥m

which in terms of eq. (31) gives

A% g, <Fo—+4d

The smoothed second difference of the spectrum is
computed using the same smoothing procedure. Re-
placing y,, by the target spectrum &,,(k), eq. (33) gives
for the s.d.w.f,,

P (k, Eo) = (34)

2 M
B{Z '973,,,¢,,,(k)
m=1

2

M
L AEe BBk, Ey)
m=1



