
N U C L E A R  I N S T R U M E N T S  AND METHODS 26 (I964)  274 -284;  © N O R T H - H O L L A N D  P U B L I S H I N G  CO. 

H I G H  R E S O L U T I O N  S E C O N D  D I F F E R E N C E  A N A L Y S I S  OF P H O T O N U C L E A R  YIELD C U R V E S  

K. N. GELLER and E. G. MUIRHEAD 

Physics Department, University of Pennsylvania Philadelphia 4, Pennsylvania* 

Received 30 August 1963 

A critical evaluation of the problems involved in the high resolu- 
tion analysis of photonuclear cross sections from bremsstrahlung 
yield curves is presented. In particular, the effect of the analysis 
bin width and the shape of the x-ray spectrum are considered. A 
method is presented which circumvents the need to know the 
shape of the spectrum at the high energy tip; the latter informa- 
lion is contained in an effective energy resolution function that 

does not enter in the analysis, but for a normalization factor. The 
method, which is an iterative one, is based on taking the second 
difference of the photonuclear yield curve and is applicable to 
measurements made with bremsstrahlung in energy intervals less 
than 200 keV. An analytic smoothing procedure is used. The 
satisfactory performance of the method is demonstrated by the 
analysis of three synthesized yield curves. 

1. lnlroduction 

A large body of our  experimental knowledge about 
photonuclear processes come from studies undertaken 
with the continuous radiation spectrum produced in 
electron bremsstrahlung. The structure of  these experi- 
ments precludes any direct measurement of the cross 
section of  the photo-nuclear process under investigation. 
Instead, these experiments measure a quantity propor- 
tional to the bremsstrahlung weighted cross section or 
more commonly the integral yield per unit of monitor 
response. Measuring the integral yield at various values 
of  the maximum energy of the bremsstrahlung beam 
generates a yield curve, and the reaction cross section is 
then deduced from this yield curve, assuming that the 
radiation spectrum for the experimental situation is 
known. 

The various procedures which have been proposed to 
calculate tire cross section from the measured yield data 
are straightforward and discussed extensively in the 
literatureS). Although the cross section computed by 
these analytical methods is unique, identification with 
the physical cross section presumes a detailed know- 
ledge of the yield function and the experimental radia- 
tion spectrum. In practice, neither the yield function nor 
the spectrum is known exactly. Invariably, the yield 
function is known only to a reasonable degree of preci- 
sion and only at a series of  beam energies (Ko), usually 
separated by equal energy intervals, say A (bin width). 
Hence. the cross section deduced from each measure- 
ment is some kind of weighted average over the energy 

* Supported in part by the Office of Naval Research, the Air 
Force Research and Development Command, and the National 
Science Foundation. 

* For this discussion a thick-target may be defined as one for 
which multiple electron scattering effects are important but 

which is still very much smaller than the range corresponding 
to the incident electron energy. 

interval A, where A is a measure of the experimental 
energy resolution. 

Now, aside from energy resolution considerations, 
any difference between the assumed and actual radiation 
spectra will be reflected in the values computed for the 
cross section. The effect of a spectrum change on this 
computed cross section will depend on the extent of  the 
disagreement between assumed and actual spectra, on 
the energy resolution, and on the true variation of  the 
reaction cross section with energy. Generally speaking, 
in most experiments using bremsstrahlung, the energy 
resolution is nominally :~MeV or greater and only the 
gross structure of  the reaction cross section in the giant 
resonance region has been extracted. However, when 
the photoreaction cross section is characterized by 
discrete resonances having widths of  the order of several 
tens of keV and level separations of several hundreds of 
keY, an energy resolution comparable to or less than the 
level widths is called for. Under such circumstances the 
effect of a spectrum modification can be very great 1,2). 
Hence, in order to compute the cross section where sharp 
resonances are involved, the radiation spectrum incident 
on the sample must be known quite accurately. The 
common practice of  assuming a radiation spectrum 
given by the extreme relativistic Born approximation 
calculation (the so-called SchiffspectrumJ)) is no longer 
suitable. The thin-target or "intrinsic" bremsstrahlung 
spectrum must now be replaced by the appropriate 
thick-target spectrum.t Modification of  the intrinsic 
spectrum produced by electron energy loss, electron 
scattering in the radiator, and by the energy dispersion 
of the primary electrons striking the radiator must be 
considered. The problem is complicated still further by 
the dependence of the bremsstrahlung cross section on 

~) A. S. Penfold and J. Leiss, Phys, Rev. 114 (1959) 1332. 
2) A. S. Penfold and B. M. Spicer, Phys. Rev. 100 (1955) 1377. 
3) k. I. Schiff, Phys. Rev. 83 (1951) 252. 
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the pho ton  emiss ion angle3). Consequent ly ,  the spec t rum 
shape is influenced, albeit slightly by the angle subtended 
by the nuclear  target at the  radiator.  For  activation 
experiments ,  this acceptance angle determines an effec- 
tive X-ray target thickness  somewhat  greater  than  the 
geometrical  thickness  o f  the radiator.  A procedure  for 
evaluat ing the thick-target  spec t rum in terms of  the 
intrinsic spec t rum is available4), but  has  not  been widely 
used since the detailed shape of  the b remss t rah lung  
spec t rum in the immediate  vicinity of  the high energy tip 
has not  been satisfactorily predictedS). Consequent ly ,  
high resolution cross section analysis  of  b remss t rah lung  
yield data  by convent ional  techniques has not  been 
a t tempted over a large energy region. 

Up to the present, fine structure in photo  reaction 
cross sections has  been inferred from two main  types o f  
experiment.  Where  the reaction products  are charged 
particles, these have been recorded in nuclear emulsions.  
These exper iments  suffer f rom the l imitations imposed 
by statistical accuracy and energy resolution, the latter 
being in general several hundred  keV for protons.  Acti- 
vation experiments  on the other  hand give a well-defined 
yield curve from which fine structure has often been 
successfully inferred from relatively sharp  changes  in 
curvature  o f  the yield curve. From this procedure are 
obtained the so-called breaks which first indicated the 
extent of  level absorpt ion in oxygen, carbon and other 
light nuclei. It is now realized that  this approach  can 
only provide unambi guous  informat ion about  level 
s tructure in restricted si tuations,  viz., in the region of  a 
few million electron volts above the reaction threshold.  
For the determinat ion of  structure in the giant resonance 
region, there is no subst i tute  for a complete  cross section 
analysis such as the one to be described below. 

In view of  the above ment ioned difficulties we have 
developed a new method  for the analysis o f  high resolu- 
tion b remss t rah lung  yield da ta  which has significant 
advantages  over previous methods.  For the latter it is 
essential to know exactly the relative number  of  photons  
in each energy bin right to the high energy tip of  the 
spectrum. A significant error in this number  for the 
uppermost  bin, for example,  produces a corresponding-  
ly serious error in the computed  cross section. In the 
present method,  which is an iterative one, this difficulty 
is overcome by replacing the detailed shape at the tip by 
an effective resolution function,  based on the variation 
o f  the spec t rum with energy over several bins in the tip 
vicinity. Since the  integrated area rather than  the de- 
tailed shape o f  this effective resolution funct ion is o f  
pr imary significance in the subsequent  cross section 
analysis, the exact shape is not  required at the spectral 
tip. A sufficiently precise est imate o f  this shape may be 

inferred f rom a knowledge o f  the expected behaviour  o f  
a thick target spec t rum in this region, together  with an 
experimental  measurement  of  this spectrum, even 
though  the latter is a lmost  always o f  limited statistical 
accuracy owing to the inherent  difficulty o f  the measure-  
ment .  At  photon  energies removed f rom the tip, the 
shape is assumed proport ional  to the theoretical brems- 
s t rah lung cross section. 

The general principles of  the present second-difference 
method (s.d.m.) have already been published by Geller6). 
The s.d.m, involves the calculation of  second differences 
of  the yield and spec t rum functions.  It is applicable to 
photonuc lear  yield curves measured with thick-target  
b remss t rah lung  in energy intervals less than  the energy 
loss equivalent of  the bremss t rah lung  target thickness 
(approximately 200 keV). It has been used to produce 
the Ot6(y,n)O ~5 cross section from threshold to 
17.5 MeV in 34 keV steps, and from threshold to 23 MeV 
in 68 keV stepsT). 

In sec. 2 a brief outline of  the general procedure of  
cross section analysis is summarized,  followed by details 
o f  the second-difference method in sec. 3. In applying 
the s.d.m, to actual yield curves, it is desirable to damp  
out  f luctuations due to statistical uncertainties.  This is 
achieved by using an analytical smooth ing  procedure 
outlined in sec. 4. A test of  the general procedure is 
discussed in sec. 5 where hypothetical  yield curves are 
generated and subsequent ly  analyzed allowing for the 
effects of  statistics. In sec. 6 the photoneut ron  cross 
section for O16(7,n) is presented. 

2. Transformation Method of Cross Section Analysis 

2.1. INTRODUCTION 

In this section we review briefly the t ransformat ion  
method of  cross section analysis originally proposed by 
Spencer s) and elaborated in a matrix formulat ion by 
Penfold and Leiss~). Al though equivalent to the " total  
spectrum'" and "pho ton  difference" methods,  the trans-  
format ion method provides a clearer unders tanding 
o f  the problem and is fundamenta l  to the present 
method.  

The yield, K of  a photonuclear  reaction measured  
with electron bremss t rah lung  extending to energy K 0 is 
related to the reaction cross section a(k) by the integral 
equat ion 
4) A. S. Penfold, University of lllinois Report (unpublished). 
5) E.g. the attempt of R. J. Jabbur and R. H. Pratt, Phys. Rev. 

129 (1963) 184 and references herein. 
6) K. N. Geller, Phys. Rev. 120 (1960) 2147. 
7) K. N. Geller and E. G. Muirhead, Phys. Rev. Letters It  (1963) 

371. 
8) L. V. Spencer, National Bureau of Standards Report, No. 

1531, (Washington, D. C., 1952L 
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f ~o dka(k) exp ( - #kx)N(k, Ko) 
Y(Ko) = g o 

f 2  dkM(k)exp(-  #kX')N(k, Ko) 

= (g/M(Ko)) f~o dka(k) exp (- -  pkx)N(k, Ko) , 

(1) 

where a(k) is the cross section at energy k;  exp ( - # k X )  
est imates  the  photon  absorpt ion in the radiator,  sample  
and other  material  interposed between sample  and  ra- 
diator;  g includes the target  and efficiency factors;  and  
M(Ko), the  moni tor  response funct ion normal izes  the 
spec t rum N(k,Ko). Ins tead of  the  n u m b e r  spectrum,  
N(k,Ko), it is more  convenient  to use the cor responding  
intensity spec t rum ~b(k,Ko) which is to a good  approxi-  
ma t ion  "shape- independen t"  for the energy range o f  K 0 
used. Equa t ion  (1) is then  to be solved for the  reduced 
cross section 

s(k) = a(k) exp ( -  #kx)/k (2) 

according to the equat ion 

y(Ko) = f ~° dks(k)q'(k, Ko) , (3) 

where the  reduced yield y(Ko) = Y(Ko). M(Ko)/g. 
Equa t ion  (3) can be solved exactly for s(k) as suming  

tha t  both  the yield funct ion and  the radia t ion spec t rum 
are known.  Operate on bo th  sides o f  eq.(3) with an  
appropria te  t ransformat ion  funct ion T(Ko,Eo) where 
T =  0 for Ko >Eo.  Twi l l  be chosen so as to t r ans fo rm 
the spec t rum to a 6-funct ion spectrum*. 

The relation between the transformed yield f and the 
cross section is now prescribed by the transformed 
spectrum 

~(Eo) = f i°dKoy(Ko)T(Ko, Eo) 

= f 2° dKo f 2° dks(k)~(k, Ko)T(Ko, Eo) , 

since q~(k, Ko) = 0 for k > K o we can write 

~(Eo) = f i°dks(k)~(k, Eo) , (4) 

where the t ransformed spec t rum ~ is defined by 

Eo) = f ~ °  dKo¢(k ,  Ko)T (K  o, Eo) (5) ~(k, 

and merely expresses the fact that  ~ is obtained by 

taking a linear combina t ion  o f  ~ ' s  for var ious  values o f  
K o .For a given ~,  eq. (5) is solved for the t ransformat ion  
funct ion T(Ko, Eo). Thus  for $(k ,  E0) = 6(E o - k) (delta 
function),  the  yield t ransformat ion  immediate ly  gives 
the  reduced cross section, s(Eo). In practice, eqs.(4) and  
(5) are solved numerical ly by matr ix me thods ;  T i s  then 
the inverse o f  the  spec t rum matrix for a delta funct ion 
t r ans fo rmat ion .  

2.2. CHOICE OF SPECTRUM 

Now,  the solution,  s(k), will differ f rom the true 
reduced cross section, Z(k),ifthe assumed  spec t rum does 
not  cor respond to the  actual  exper imental  s i tuation.  In 
practice, the intrinsic spectrum, q~(k, Ko) is often used in 
place of  the experimental  spec t rum 4~(k, Ko) , and  the 
t rans format ion  funct ion T(Ko,Eo) appropr ia te  to 
~0(k, K0) is used to solve for s(k). The depar ture  o f s  f rom 
Z depends on the  na ture  of  the spec t rum generat ing 
function,  S(K6,Ko) as defined by Penfold4), where 
S(K~, Ko) = 0 for K~ > K o and 

q~(k, Ko) = ~p(k, K'o)S(K'o, Ko) dKo. (6) 

Opera t ing  on both  sides of  eq. (3) with T(Ko, Eo) with 
given by eq.(6) and  s(k) replaced by Z(k) we obtain  t 

~(Eo) = dkS(k) dK'o~o(k, Ko)T,(K;,Eo), (7) 
o o 

where the modified t ransformat ion  funct ion T~ is given 
by 

TI(Ko, Eo) = j~o  dKoS(K'o, Ko)T(Ko, Eo). (8) 

The  solution obtained using q)(k,Ko) is given by 

~v(Eo) = f ~° dks(k)~o(k, Eo) , (9) 

where 

0(k,  Eo) = dKoq)(k, g o ) r ( K o ,  Eo) .  
o 

C o m p a r i n g  eqs.7 and  9 with (} a delta funct ion we obtain  

s(Eo) = f ~° dkZ(k) f i° dKo~o(k, Ko)T,(K'o, Eo) . (10) 

Thus ,  the cross section computed  with the  intrinsic 

* Other choices of T are possible, e.g. transformation to a 
spectrum ~r(k, K0) = const, leads to a solution for the inte- 
grated cross section. 

t The effect of a spectrum change on the monitor response func- 
tion is not very large and is not considered in the present dis- 
cussion. For further details consult ref. 1. 
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spectrum is a weighted average of  the true cross section 
Z(k). If  thick-target effects are primarily responsible for 
the spectrum modification, then S(K6, Ko) spans a small 
energy range K6 - Ko~-6, where 6 is a measure of  the 
effective target thickness4). A large error will be intro- 
duced into the cross section computed with the intrinsic 
spectrum if the cross section exhibits sharp structure in 
an energy interval o f  order d. 

This is particularly true of  light nuclei2), i.e. A _< 40. 
In such cases the effect of  a spectrum change is quite 
large. 

3. Description of the Present Method 

3.1. GENERAL DISCUSSION 

In the previous section we showed that  for the general 
t ransformation method a modification of  the radiation 
spectrum in the immediate vicinity of  the spectral tip can 
have a serious effect on the cross section computed from 
photonuclear  yield data. Although the problem is 
solvable, given the modified thick-target radiation 
spectra, the computat ional  labor involved in generating 
thick-target spectra is considerable. 

Rather than proceed along these lines, we have 
developed a rather simple method of  analysis which is 
not  sensitive to the spectrum details in the immediate 
vicinity of  the tip. Suppose in eq.(5) we separate the 

transformed spectrum 4~ into two parts 

~(k ,  Eo) = qSt(k, eo) + ~r(k, Eo) ,  (11) 

where q~t is equal to ~ for values o f k  in the immediate 
vicinity of  the spectral tip, i.e. k~-Eo, and zero else- 

where; while ~r is zero in the immediate vicinity of  the 

tip and equal to ~ at photon  energies removed from the 
tip, i.e. k < E o. Then, for any arbitrary t ransformat ion 

function, T(Ko,Eo), only q~t is determined by the 
spectrum in the tip region. On substituting eq . ( l l ) ,  
eq.(4) reduces to 

( Eo dk " E , 
s(kO = s°(E°) - J o  -~ - s ( k ) z ( k ,  0, A) (12) 

where s(kt) is the reduced cross section averaged over 

~,(k,Eo) 

s(k,) = f~°dks(k)4~,(k,~o)/W(A) 
So(Eo) = ; (Eo) /W(~)  

,~(k, Eo, A ) = Cr(k, Eo)d/W(A)  
and 

f l  ° W(A) = q~t(k, Eo) dk 

(13a) 

(13b) 

(13c) 

(13d) 

The explicit dependence of  the residual term 2 on bin 
width A will soon become apparent.  Equation (12) can 

be solved by iteration for s(kt) provided ~r is known. 

Since ~r is determined by the radiation spectrum at 
energies removed from the spectral tip, it can be cal- 
culated to sufficient accuracy for use here from the 
bremsstrahlung cross section given by Bethe-Heitler 9) or 
Schiff3). 

Now, if the s(kt) computed f rom eqs.(13) is to bear 

some semblance to the actual cross section, then @(k, 
Eo) must assume the form of  a suitable resolution 
function, say large and positive for values of  k near E~. 

The exact behavior of  ~ of  course, is determined by the 
t ransformation and the detailed shape of  the spectrum 

near the tip. A detailed description of  ~t, however, is not 
necessary to calculate the average cross section. An 
empirical description of  the spectrum tip shape is ade- 

quate to deduce the resolution function provided ~ goes 
to zero at the tip as is expected for a thick target spec- 
trum. 

3.2. CHOICE OF TRANSFORMATION FUNCTION 

The choice of  an appropriate t ransformation function 
is fundamental  to the analysis. We require of  the trans- 
formation that  it be simple, generate a resolution func- 
tion with desirable characteristics, and de-emphasize the 
contribution to s(k) from the iterative term, i.e. 2 < 1 for 
all values ofk .  The transformations we shall consider are 
the first and second difference of  the radiation spectrum 
over an energy internal A. The transformed spectra 
q~(k,E0) or weighting functions are defined by 

First difference weighting function (f.d.w.f.) 

• '(k, Eo, A ) = t~(k,E o + ½A) - ~(k ,  Eo - ½A), (14a) 

Second difference weighting function (s.d.w.f.) 

• "(k, Eo,A) = ~ ( k , E  o + A) - 2q~(k,Eo) + ~(k ,E  o - A) 
(14b) 

The corresponding transformed yields are the first and 
second differences of  the reduced yield, respectively. The 
dependence of  each weighting function on E 0 and A is 
explicitly noted in eqs. (14). These functions are cal- 
culated for an intensity distribution of  the simple form 
cb(k, Eo) = A(E o - k)" for n = 0, 0.5 and 1.0. The results, 
shown in fig. 1, are plotted as a function of  (E 0 - k)/A ; 
thus plotted, each weighting function is found to be 
independent  o f E  o and A. The actual spectrum, of  course, 
will differ from these. However, in the immediate vicinity 

9) H. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146 
(1934) 83. 
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Fig, 1, Weight ing functions for the bremst rahlung intensity dis- 
tr ibution q~ = Ao(E-k)n for n = 0, 0.5 and 1 as defined by (14a) 

and (14b). 

of  the spectral tip, the simple power law behavior is a 
close approximation to the actual target spectrumS°). 

We conclude from fig. l that if 0 -< n <0 .5 ,  a first 
difference of  the yield curve should approximate the 
actual cross section, whereas, for 0.5 < n _< 1, the second 
difference of  the yield curve is to be preferred. For actual 
spectra, these conclusions will be modified by the 
dependence of  each weighting function on bin width, A, 
particularly for large A. 

m) H. W. K o c h  and J. W. Motz ,  Rev.  Mod.  Physics 31 (1959) 
920. 
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The appropria te  t ransformat ion  for the analysis was 
deduced from the following considerat ions;  (1) exami- 
na t ion  o f  the first and  second difference o f  a representa- 
tive yield curve measured  in small energy intervals, and 
(2) an experimental  determinat ion of  the spec t rum iso- 
ch romat  at 15.12MeV. The  latter was measured  by 
scattering photons  elastically f rom the 15.12 MeV level 
o f C  ~2. 

In fig. 2 we show (a) the yield curve 7) of  the reaction 
OJ6(?,n)O 15 measured  in energy intervals o f  17keV 
from threshold to 17.5 MeV; (b) the first difference o f  the 
yield curve for A = 68 keV; and (c) the second difference 
o f  the yield curve forA = 68keV. Four  independent  sets 
o f  first and  second difference curves are calculated from 
the interlaced sets o f  yield data. It is evident f rom fig. 2 
that  the second difference t ransformat ion  is more ap- 
propriate than  the first difference; the latter bears a 
closer resemblance to the integrated cross section. In 
neither case do we obtain the actual cross section or its 
integral, since the t ransformat ion  we have used is only a 
first order approximat ion  to the exact solution of  the 
problem. 

The conclusion drawn from the analyzed yield data  is 
supported by our  i sochromat  observation.  The yield o f  
15.12MeV photons  scattered elastically at 120 ° f rom a 
carbon target is shown in fig. 3. A least squares fit of  the 
yield da ta  to A ( E  o - k ) "  (solid curve) gives a value of  
n-~ 0.6. This  result favors the second difference t rans-  
formation.  

The first and second difference o f  the spect rum iso- 

I 
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Fig. 2. (a) Yield curve of  the reaction Ol6(yn) f rom thresholds to 17.5 MeV taken f rom ref. 7; (b) the first difference of  fig. 2al with 
• I = 68 keV; (c) second difference of  fig. 2(a) for t = 68 keV. 
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Fig. 3. Experimental bremsstrahlung isochromat obtained from 
the elastic scattering of 15.12 MeV photons from carbon. The 

dashed curve is the spectrum calculated from ref. 9. 

c h r o m a t  will lie intermediate between the weighting 
funct ion shown in fig. 1 for n = 0.5 and 1.0. Since the 
i sochromat  represents the yield curve for a 6-function 
cross section, it is clear that  the second difference o f  the 
i sochromat  closely approximates  to the shape of  the 
input  cross section with two modifications.  Firstly, the 
width o f  the peak in the s.d.w.f, shows the effect o f  the 
finite resolution of  the method,  and secondly, the nega- 
tive overswing mus t  be removed by an iterative proce- 
dure.  (See eq. (13), sec. 3). The dashed curve in fig. 3 
represents the i sochromat  at 15.12 MeV evaluated from 
the Bethe-Heitler b remss t r ah lung  cross section 9 nor-  

Legend~ 

--SDWF fmm~pefimenfol 
Isochromol 

.... SDWF from B H Spectrum 

-I 0 I 2 3 4 S 6 7 

lEo-k) /A 
Fig. 4. Comparison of the s.d.w.f, obtained from the experimen- 
tal determination shown in fig. 3 (solid curve) with that obtained 

from the spectrum calculated from ref. 9-(dashed curve). 

malized to the exper imental  result at 16.5MeV. The  
overall agreement  o f  exper iment  with the  Bethe-Heitler 
prediction is remarkably  good. 

Because o f  this agreement  between our  empirical  iso- 
ch roma t  and  the Bethe-Heitler cross section, the latter is 
used to compute  the s.d.w.f. In fig. (4) we compare  the 
s.d.w.f, suggested by exper iment  (solid curve) with the 
Bethe-Heitler expression evaluated for (Eo,A) = (17.5, 
0.068)MeV (dashed curve). The  two curves are nor-  
malized at E o - k = 0. The difference between the two is 
not  great; the Bethe-Heitler result gives a slightly larger 
negative overswing and a reduction in the low energy 
tail and  has  so far proved to be the most  satisfactory 
s.d.w.f, for analysis. 

The dependence of  the s.d.w,f, on E o was investigated 
using the Bethe-Heitler expression for the bremsst rah-  
lung intenstiy. For a given value o f ( E  o - k) /A the abso-  
lute value of  s.d.w.f, decrease monotonical ly  with 
increasing E o. A factor of  3 change in E o (10to  30MeV) 
changes s.d.w.f, by no more than  1 ~,,~ for all values of  
(E  o - k)/A.  Therefore,  the s.d.w.f, dependence on E o can 
be neglected without  contr ibut ing a significant error to 
the computed  cross section. Equat ion  (12) is thus  solved 
for s(k)  by an iteration procedure sliding the s.d.w.f. 
a long the abscissa as E 0 is varied. 

The  dependence of  s.d.w.f, on  bin width, A, was also 
investigated using the Bethe-Heitler expression. At a 
given value of  (E  o - k) /A,  the absolute  value o f  s.d.w.f. 
increases monotonica l ly  with increasing bin width. It is 
significant to note here that  the behavior  of  the  f.d.w.f. 
using the Bethe-Heitler expression, is just  the converse, 
i.e. the low energy tail decreases with increasing bin 
width. This result is consistent  with the empirical obser- 
vat ion that  the first difference of  photonuclear  yield 
curves over energy intervals of  abou t  0.25 0 .5MeV 
closely resembles the actual cross section. Hence, the 
significance o f  the residual term in eq. (12) is reduced by 
taking the s.d.w.f, when A < 0.25 MeV, whereas when 
A > 0.25 MeV the f.d.w.f, is preferable. Application of  
the f.d.w.f, to an  iterative solution o f  s(k)  f rom poor 
resolution photonuc lear  yield da ta  (A =0 .5MeV)  was 
carried out  by Carver and Lokan  11). 

4. Actual Calculational Procedure 

4.1. INTRODUCTION 

The statistical uncertainties inherent  in experimental  
yields is reflected in the computed  cross section, and is 
often responsible for excessive, non-physical  oscillations 
of  s(k) .  Since both the actual s(k)  and the radiat ion 
spec t rum are expected to be inherently cont inuous  
functions of  the energy, the experimental  da ta  has  been 
11) j. H. Carver and K. Lokan, Aust. J. Physics l0 (1957) 312. 
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smoothed  before a t tempt ing to compute  s(k). Smooth ing  
of  the experimental  yield ordinates,  whether  subjectively 
by eye, or  objectively by analytical procedures,  d a m p s  
out  the non-physical  oscillations with some sacrifice o f  
energy resolution. In essence, smoo t h i ng  the  input  da ta  
improves  the real to spur ious  structure o f  the final result 
("signal to noise rat io")  by reducing the energy resolu- 
tion (the "bandwid th") ,  Therefore,  we have adopted the 
analytical smooth ing  procedure  lz) of  piecewise least 
square  fitting of  the yield da ta  over a l imited energy 
interval. 

4 . 2 .  S M O O T H I N G  P R O C E D U R E  A P P L I E D  T O  T H E  P R E S E N T  

P R O B L E M  

In the present  problem the yield da ta  is fitted to a 
quartic funct ion over an  energy interval encompassed  
by 7 adjacent  points  ( M = 7 ) .  The order, n, of  the 
fitting polynomial  (~a,x") and the fitting interval 
( M - 1 ) A  are not  completely arbitrary,  but  related to 
the actual  shape o f  the cross section. W h e n  sharp  
resonant  s tructure is present  in the cross section, then  
the quart ic is a reasonable fitting funct ion  since it 
allows for points  o f  inflection of  the yield curve. The 
fitting interval determines the n u m b e r  o f  degrees o f  
f reedom ( M - n )  and  is selected to give an acceptable 
resolution. The  general  smooth ing  procedure  is given 
in the appendix.  

The s.d.w.f, and  the corresponding smoo th  yield 
function,  are each obtained as a linear combina t ion  o f  
several cb(k, E~) and y(E~) respectively with coefficients 
given by the appropria te  terms of  the smooth ing  
matrix.  Specifically, for the problem at hand  (see 
appendix,  eq. (33)). The  s.d.w.f, takes the form 

2 1 
qY'(k, Eo) = Z12 ~=, ,Y3,fl'm(k) (15a) 

where ~,,, = ~(k, E o + (m - 4 ) A )  and  ~3,~ is obta ined 
f rom table 2(a). Likewise, the second difference yield 
funct ion  is given by 

Y"(E0) = 22  ~ ~3mY,n (15b) 
A m ~ l  

where 

Ym = y [Eo  + (m -- 4)A] 

The s.d.w.f, evaluated for the  Bethe-Heitler intensity 
dis t r ibut ion is shown in fig. 5 for (E o, A) =(17.5,  0.068) 
MeV. This  result does not  differ significantly at the high 
energy tip f rom the s.d.w.f, obtained using the spec- 
t r u m  shape predicted by the empirical isochromat .  

12) B. C. Cook, Phys. Rev. 106 (1957) 300. 
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Fig. 5. S.d.w.f. for the Bethe-Heitler intensity distribution (ref. 9) 
for (E0,A) = (17.5, 0.068) MeV with smoothing (7 points to a 
quartJc function). The resolution function is shown as the shaded 

region. 

The calculational procedure for s(k) is the same as 
before but  with the t ransformed yield and  spect rum 
replaced by their smoothed  equivalents,  ( shown in bold 
face type). Equat ions  (12) and  (13) reduce to 

• E~ dk 
s(kt) = so(Eo) - j o ~ s ( k ) y ( k ,  Eo, A) (16) 

where £° s(k) = dks(k)~'(k, Eo)/w (A) (17a) 

s(E o) = y"(Eo)/w (A) (l 7b) 

:.(k, Eo,~) = ~o;'(k, eo)~ /w(~)  (17c) 

w(a) = (~°'cpi'(k, Eo) dk (17d) 

and  

E 0 = E 0 + I ( M  - 1)A (17e) 

We select as our  resolution function,  (p't'(k, Eo) , the 
s.d.w.f, contained in the interval - 2 A _  < E 0 - k_<d 
(see fig. 5, shaded region). The remainder  of  the 
(smooth)  s.d.w.f, consti tutes the residual weighting 
funct ion 2(k, Eo, A).* 

• A minor complication in computing with eq. (16) arises from 
the existence of the negative overswing in front of the resolu- 
tion function (bin" 3" in fig. 5). This is circumvented by 
setting up an iterative pr()cedure such that on the first pass on- 
ly, this bin is set to zero. On subsequent passes, therefore, there 
exists estimates ofs(k) for all k. The estimates for stk) rapidly 
converge and three of four passes suffice. This difficulty can be 
avoided by adopting for the smoothing procedure a five point 
fit to a cubic function (table 2b) instead of the seven point fit to 
a quartic function discussed in this paper. 
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Equation (16) is solved for s(k) by iteration• The in- 
tegral term on the right side of this equation is replaced 

by its numerical equivalent _r, (s(k)) (2(k,  Eo, A)) 
where (s(k))  and ( 2 )  are the average values of the 
cross section and residual spectrum in the interval A. 

The energy corresponding to s(k) is given by the 
centroid of  the resolution function, i.e. k = E o + ½A. 

5. Test of the Method 

As a consequence of choosing the s.d.w.f, as the 
transformed spectrum, it is found that the relative 
shape of  the s.d.w.f, remains the same to within 1-2 
percent as the peak energy E 0 is altered over a wide 
range, say 15 25 MeV. It is desirable to make an exami- 
nation of  the combined effect on the solution for the 
cross section of  (a) the choice of  s.d.w.f., its effective 
resolution function, and (b) the statistical variations of 
successive yield points and the possibility of  generating 
spurious structure in the output  data. Accordingly the 
following thought-experiments were devised• 

Test I. A (7, n) cross section curve as a function of  
photon energy was obtained by adding four Breit- 
Wigner level cross sections whose parameters closely 
match those of  the Ot6(7 , n) experimental data. The 
level parameters are listed in table 1. The curve so 

TABLE 1 

Level parameters chosen for imput cross section for test 1 

Peak energy 
(MeV) 
16.23 
17.14 
17.305 
17.55 

Peak cross 
section 

1.67 
3.54 

10.94 
1.71 

Level width 
(MeVt 
0•032 
0.045 
0.090 
0.500 

generated from threshold at 15.6 MeV to 18 MeV in 
0.034 keV intervals is shown in fig. 6a. 

Test 2. The input cross section, shown in fig. 6b, was 
taken as a parabola of  the form a(E) = e + 2e 2 where 
is equal to the difference between the photon energy E 
and the threshold, ET = 15.6 MeV. 

Test 3. A linear combination of  the two input cross 
sections was taken to simulate a set of  resonances with 
a continuum background and is shown in fig. 6c• 

The corresponding yield curves are shown in fig. 7. 
These were generated from the respective cross sections 
according to the usual prescription as given by eq. (3) 
using the Bethe-Heitler bremsstrahlung spectrum 9) 
which was calculated for each value o f k  and K o. A set 
of  yield curves typical of  actual experiments were 
derived from those of fig. 7 by defining the statistical 

l l l l l l I l i l l l i l  
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15.6 16 16,5 17 175 IB 

Pholon Enerqy (MeV} 

Fig. 6. Input cross section curves for the three test runs. (a) Four 
Breit-Wigner levels, whose parameters are given in table 1, (b) 
"continuum" cross section of parabolic form, (c) admitture of 

cross sections given in (a) and (b). 

level of  accuracy of, say, the highest energy point• This 
was taken at 300000 counts throughout• Each yield 
point y, was scaled up accordingly and its variance a 2 
was assumed equal to y,, no other sources of variation 
being considered• For each simulated yield curve, a 
Monte Carlo method was used to compute the devia- 
tion f . a .  of  each yield point y. +f.a. from the " t rue"  
yield y.. A random number  generator was used to 
select the magnitude and sign o f f .  consistent with a 
normal error distribution. In this way a set of 6-10 
completely independent yield curves embodying statis- 
tical fluctuations was generated for each test. 

It is of incidental interest to observe the positions of  
"breaks"  on these curves. In the favourable case of  the 
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Fig. 7• Yield curves generated from the cross sections shown in 
fig. 6, (a) for test 1, (b) for test 2, and (c) for test 3. 
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Fig. 8. Typical cross section curves obtained by the second dif- 
ference method, (a) for test 1, (b) for test 2, and (c) for test 3. 
Each curve is obtained from the input cross section (fig. 6) con- 
voluted with the s.d.w.f, resolution function. Solid error bars 
represent the standard error of the cross section obtained by pro- 
pagating the variance through the second difference method. 
Dashed error bars represent the standard error obtained from the 

6 to 10 independent yield curves. 

first narrow level at 16.23, the break provides useful 
information. Such is not the case for the levels at 
17.14, 17.31 MeV, and 17.5 MeV. 

The yield curves were then analyzed by the s.d.m. 
yielding the result shown in fig. 8. Each cross section 
curve, it must be emphasized, was obtained with a 
s.d.w.f, compiled for only one value of Ko, viz. 17.51 
keV, which was slid up or down. Resonance broadening 
of  the cross section curves emerging from the s.d.m. 
shows the effect of  the resolution of the method. This 
resolution function, shown in fig. 5, is convoluted with 
the input cross section to give the resultant curve shown 
in fig. 8. The agreement of the latter with the points 
from the s.d.m, is excellent. 

The standard error computed by propagating the 
variance of  each yield point through the various opera- 
tions of  the s.d.m, is shown for representative points by 
solid bars in fig. 8. On the other hand, external standard 
error computed from the dispersion of the analyzed 
cross sections for the 6 10 independent yield curves is 
shown by broken vertical lines on fig. 8. In general 
this latter error is less than, but not inconsistent with 
the former. 

The results of  test 1, confined to four levels only, 

indicate the satisfactory nature of  the q~cportion (the 
resolution function) of s.d.w.f, for the analysis. Tests 2 

arid 3 show that the 4~ portion of  s.d.w.f, adequately 
predicts the cross section emerging from the s.d.m. 

since the ~ now has to operate on a sizeable cross 
section from threshold to the energy K o. In fact, it 
adds an integrated weighted contribution of the cross 
section from threshold to K o. 

These three tests indicate the adequacy of s.d.m. 

6. Photoneutron  Cross  Sect ion  for OXe(y, n) 

The s.d.m, has been successfully applied to analyse 
the Ol6(y, n) cross section from 15.6 to 23 MeV. The 
results of  the analysis from 18 to 23 MeV are shown in 
fig. 9. The smooth curve represents an analytical fit to 
the analysed cross section obtained by convoluting the 
s.d.w.f, resolution function with a linear superposition 
of Breit Wigner levels taken to synthesize the actual O 16 
(?, n) cross section. Additional fine structure over that 
previously observed is accounted for by the improve- 
ment in the energy resolution of  this method of  ana- 
lysis. The overall agreement with other obsrevations 
on 016 has been discussed in ref. 7. 
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Fig. 9. Cross section for the O16(7n) 0 Is reaction from 18 t~ 
23 MeV. Analysis bin width, A E =  68 keV. Resolution (see 

inset fwhm - 136 keV. 
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7. Conclus ion  

The s.d.m, for the analysis o f  bremsstrahlung yield 
curves has been shown to produce an effective cross 
section with energy resolution superior to any previous 
method. It has the advantages of  having (1) a fairly 
well defined resolution function, and (2) o f  giving im- 
mediately in the second difference of  the yield curve a 
good indication of  the nature and type of  resonant  
structure present. Computat ions  were performed on an 
IBM 1620 computer  without unduly long computing 
time. 

Appendix  

CALCULATION OF S M O O T H E D  S E C O N D  D I F F E R E N C E S  O F  

T H E  YIELD A N D  S P E C T R U M  

A polynomial o f  degree n is piece-wise fitted to M 
yield ordinates where M is an odd integer, over a 
suitably chosen energy interval, symmetrically disposed 
about the central energy, E 0. The expression for the 
smoothed yield at some energy Eo, , near E o is 

Y(Eom ) = ~ ctj(Eo)(E o - Eom) j , (18) 
j = 0  

where E o -  {d _< Eom ~< E o +½d, and d i s  the smooth-  
ing interval. The c~j(Eo) are determined by a least 
squares analysis. When the yield ordinates are ob- 
served at equal energy intervals, A, 

Y(Eom) = ~ ~j(Eo)A j { (E o - Eo,,,)/A }J. (19) 
j = 0  

Equation (19) can be replaced by an equivalent ex- 
pression in matrix representation which facilitates the 
general solution. Relative to the center energy E 0, the 
energy coordinates may be specified by the index m 
running from 1 to M, thus 

E 0 -- Eo., M + 1 
A - m - - - 2 -  (20) 

and 

Y(Eo, .)-- ,  Y~ .  (21) 

M = d/A + 1 gives the number of  ordinates to be fitted. 
Equation (19) is equivalent to 

n + l  

Y,, = ~. fikCk,,,, (22) 
k = l  

where 

fig = O~k l(Eo) Ak-a 
and 

Ckm = (Go -- Eom/a) k - I  = { ,Yl -- 12(M ~- 1) }k-1. (23) 

The fig are obtained by the least square procedure of  

minimizing the sum of  the squares of  the ordinate 
deviations 

Ym - ~ flkCk,~ = mi n i mum,  
m = l  k = l  

where y,. is the reduced yield. The minimization pro-  
cess leads to a set of  simultaneous equations 

n + l  

Z ¢I,.Y,. = ~, [¢kRu, (24) 
m = l  k = l  

where the R matrix is defined by the direct product  o f  
the ~ matrix: 

M M 

R k , =  ~ Ck,,,~,,= Y. { m - - ~ ( M  + 1)}k+' -Z.  (25) 
m = l  m = l  

The R matrix is a symmetric matrix of  simple form with 
the following properties: 

R.~t = 0 for k + l odd (26) 

~tM - 1 )  
R u = 2  ~ v k+l-2 for k +  1 even .  (27) 

v = 0  

The solution of  eq. (24) for//k is straightforward ; 

M 

~k = ~ Jk,.y. (28) 
m = l  

where 
M 

• 5~km = ~ R ~ l ~ t m  ( 2 9 )  
I=1  

and is defined as the " 'smoothing matrix".  From the 
definition of  the R matrix, it immediately follows that 

M 

~ ,  "gakra~jm = ¢~jk (Kronecker 6 f u n c t i o n ) .  ( 3 0 )  
m = l  

In terms of  the .w matrix 

1 M 
~k- l(Eo) = Ak_ 1 ,,~1 "~;''Y" 

- -  1 M 
dk_ l  ,~=,~ Yk(Eo,  Eom)y(Eom) (31) 

and the qth derivative of  the yield function evaluated 
at Eo is just q!:%(Eo). 

The smoothing matrices for (M, n) = (7,4) and 
(M, n) =(5,3) are given in table 2. The (k - 1) deriva- 
tive of  the smooth yield is obtained by taking the 
matrix product of  the kth row of ,~ with the column 
matrix y,,. 

The integral equation (21) connecting the trans- 
formed yield, here taken as the second difference of  the 
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TABLE 2(a) 
Smoothing matrix c~ for (M,n) = (7,4) 

(7 point fit to a quartic function) 
,SP is defined by eq. (26) 

0.0216450 
0.0873016 

-0.0492425 
--0.0277778 

0.0113636 

-0.1298700 
-0.2658730 

0.2537878 
0.0277778 

-0.0265151 

0.3246753 
-0.2301587 
-0.0719697 

0.0277778 
0.0037879 

0.5670996 0.3246753 
0 0.2301587 

-0.2651514 -0.0719697 
0 -0.0277778 

0.0227273 0.0037878 

-0.1298700 
0.2658730 
0.2537878 

-0.0277778 
-0.0265151 

0.0216450 
-0.0873016 
-0.0492425 

0.0277778 
0.0113636 

-0.0857143 
0.0833333 
0.1428571 

-0.0833333 

TABLE 2(b) 
Smoothingrnatrix 5~for (M,n) = (5,3) 

0.3428571 
-0.6666667 
-0.0714286 

0.1666667 

i 
0.4857143 I 0.3428571 

0 0.6666667 
-0.1428571 -0.714286 

0 -0.1666667 

: -0.0857143 
-0.0833333 

0.1428571 
0,0833333 

yield, to the spectrum is now replaced by the equivalent 
expression 

f 
Eo+½d 

y"(Eo) = dks(k)cp"(k, Eo) (32) 
o 

where ~p"(k, Eo) is defined below. In terms of the 
smoothing matrix 6e, y,,(Eo) is given by 

2 M 
y"(Eo) = A2 m~_l 5P3mYm 

which in terms o feq .  (31) gives 

Eo+~d 
y"(Eo) = <~, Y. ,~3(Eo, Eo)y(E'o). (33) 

A-- Eo" = Eo- 4~d 

The smoothed second difference of  the spectrum is 
computed using the same smoothing procedure. Re- 
placing Ym by the target spectrum ~bm(k), eq. (33) gives 
for the s.d.w.f., 

2 M 
~" (k, Eo) = A Y~-I 5/'3m~m(k) (34) 

2 M 

A 2 rn=l ~ ~3(E° '  E°)~('/¢' E°)" 


