5 MeV Mott Polarimeter at Jefferson Lab

Martin McHugh

The George Washington University

Polarized Sources, Targets, and Polarimetry 2013

Outline

MeV Mott Overview

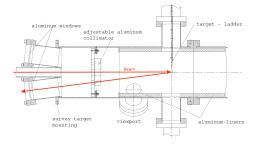
JLab MeV Mott Polarimeter

2 Current Upgrade

- GEANT4 Modeling
- Beam Dump Upgrade

3 Extra Slides

JLab MeV Mott Polarimeter

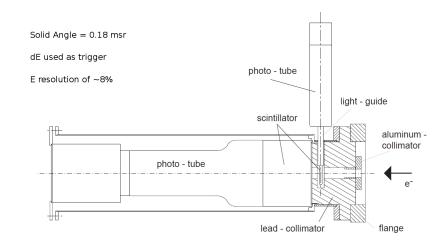

JLab MeV Mott Polarimeter

- Located in the injector
- Measures transverse polarization over the energy range of 3-5 MeV
- Largest arises from calculation of analyzing power

JLab MeV Mott Polarimeter

< A >

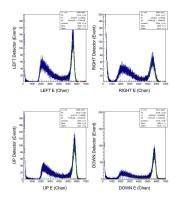
Polarimeter Specifications and Layout


- $\bullet\,$ Several Au, Ag, Cu, C targets with thickness from 0.01-5 μm
- Scattering angle of 172.9°

JLab MeV Mott Polarimeter

æ

<ロト <部ト < 注ト < 注ト


The Detectors

Martin McHugh PSTP 13

JLab MeV Mott Polarimeter

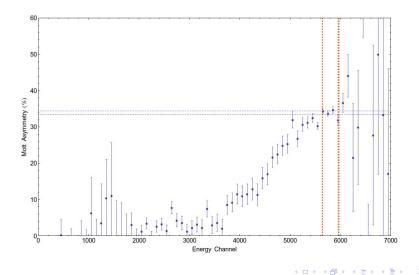
Detector Specta

The long tails of the elastic peak present a problem since they also contain the physics signal we're looking for.

Measuring Asymmetries

How we actually measure the polarization:

- Measure hits in each detector for one helicity state. Get N_L^{\uparrow} and N_R^{\uparrow} .
- Flip helicity, repeat. Get N_L^{\downarrow} and N_R^{\downarrow} .
- Calculate the cross-ratio, $r = \sqrt{\frac{N_L^{\uparrow} N_R^{\downarrow}}{N_L^{\downarrow} N_R^{\uparrow}}}$.
- Calculate asymmetry $A_{LR} = \frac{1-r}{1+r}$.
- Do the same for the vertical A_{UD} .

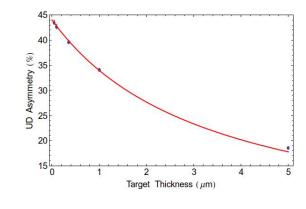

The polarization is

$$\mathbf{P} = \frac{1}{S_{eff}(\theta)} \left[A_{LR} \hat{\mathbf{y}} - A_{UD} \hat{\mathbf{x}} \right]$$

MeV Mott Overview

JLab MeV Mott Polarimeter

Asymmetry Vs. Energy



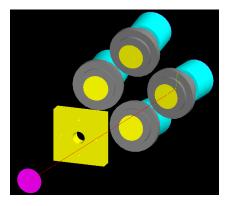
Martin McHugh

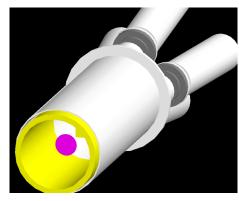
PSTP 13

JLab MeV Mott Polarimeter

June 2012 Runs

 $S_{eff}(heta_{sc},0)=$ 43.995% and $lpha=rac{0.296}{\mu \mathrm{m}}$ with $\chi^2=$ 0.039

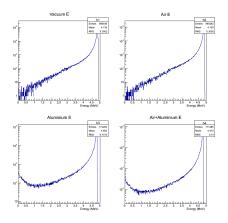

GEANT4 Modeling Beam Dump Upgrade


Goals of Current Work

- Create full model of apparatus in GEANT4
- Gain a better understanding of the tail in the elastic spectrum we see
- Upgrade beam dump to reduce backscatter

GEANT4 Modeling Beam Dump Upgrade

Current Setup



포 씨는 포

Martin McHugh PSTP 13

GEANT4 Modeling Beam Dump Upgrade

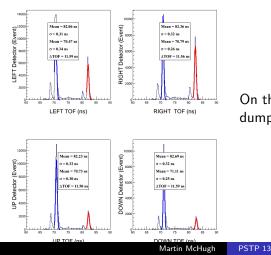
Spectral Response to "Beamline" elements

New Plots forthcoming for each element and cumulative effect. (Due to long running times with Optical photons)

GEANT4 Modeling Beam Dump Upgrade

Collimator Competition

Plot Forthcoming. The basic result is that the aluminium collimator also filters events. From running without the Al vacuum window or air and rastering over the whole baffle collimator we see an additional reduction with the addition of the Al nose/collimator of almost 20%


GEANT4 Modeling Beam Dump Upgrade

Beam Dump

- Currently several inches of Aluminium in air
- Limits power (i.e. beam current)
- Large amount of backscatter makes it into the detectors

GEANT4 Modeling Beam Dump Upgrade

Backscatter Problem

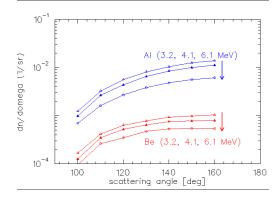

On the 1 um foil 30% come from dump. More on thinner targets.

Image: Image:

э

GEANT4 Modeling Beam Dump Upgrade

Beryllium Vs. Aluminium

æ

- ∢ 同 ▶ - ∢ 三

Electron-Nucleus Scattering

Electron moves in the nuclear Coulomb field, $\mathbf{E} = \frac{Ze}{r^3}\mathbf{r}$. Magnetic field induced in electron's frame, $\mathbf{B} = -\frac{1}{c}\mathbf{v} \times \mathbf{E}$. Therefore

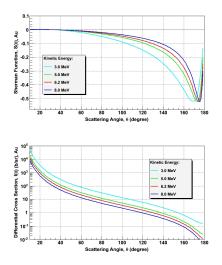
$$\mathbf{B} = \frac{Ze}{cr^3}\mathbf{r} \times \mathbf{v} = \frac{Ze}{mcr^3}\mathbf{L}$$

Magnetic field couples to the electron's spin $V_{so} = -\mu_s \cdot \mathbf{B}$. Scattering potential :

$$V(r,\mathbf{L},\mathbf{S}) = V_C(r) + V_{so}(r,\mathbf{L},\mathbf{S}) = rac{Ze}{r} + rac{Ze^2}{2m^2c^2r^3}\mathbf{L}\cdot\mathbf{S}.$$

Sherman Function

The cross section is


$$\sigma(\theta) = I(\theta) \left[1 + S(\theta) \mathbf{P} \cdot \mathbf{n} \right]$$

with $\mathbf{n} = rac{\mathbf{k} imes \mathbf{k}'}{|\mathbf{k} imes \mathbf{k}'|}$. The spin-averaged cross section is $I(heta) = |f(heta)|^2 + |g(heta)|^2$

and $S(\theta)$ is the Sherman Function,

$$S(\theta) = i \frac{f(\theta)g^*(\theta) - f^*(\theta)g(\theta)}{I(\theta)}.$$

Sherman Function Corrections

 $S(\theta)$ must account for

- Finite Nucleus. Adjust theoretical prediction.
- Multiple scattering. Shown as dependence on target thickness, *d*

$$S(heta)
ightarrow S_{eff}(heta, d) = rac{S(heta)}{1 + lpha(heta) d}$$

Run on thinnest possible target.