Pade order investigation

Asym vs. FESEM thickness or Rate -0.5σ to +2 σ, bkg subtract Run 1 data x-error bars turned into y-errors 26Jan 2016

Pade approximates

In <u>mathematics</u> a **Padé approximant** is the "best" approximation of a function by a <u>rational function</u> of given order.

Given a function f and two <u>integers</u> $m \ge 0$ and $n \ge 1$, the *Padé* approximant of order [m/n] is the rational function

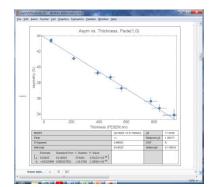
$$y = \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_2 x^2 + b_1 x + b_0},$$

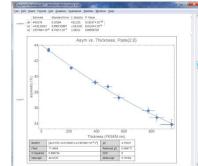
Taylor series expansions are one example of Pade' (Pade (1,0), Pade (2,0), Pade (3,0)...

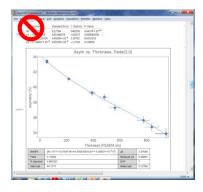
The typical fitting function
$$A = \frac{Ao}{1+\gamma T}$$
 is also Pade' (0,1)

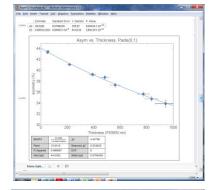
F testing

- The goodness of a fit is typically found by looking at reduced χ^2 or reduced R², which show how far the fit is from the data
- It is possible to overfit functions looking only at these "goodness of fit" tests
- An "F-test" can be used to see, to a given degree of confidence, if adding the next order term in an expansion is justified. If the F-test fails, there is a n% chance that the term isn't needed

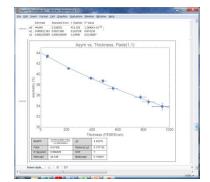

Frederick James, Statistical methods in experimental physics 2nd ed.

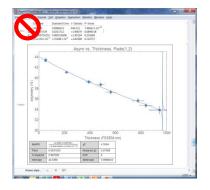

1		$=\frac{D_{j-1}}{D_{j-1}}$	-						
s distributed as a Fisl	ner-S	nedecor	F(1,	N -	j - 1) varia	ble if	the jt	h dea
s nov juovincu.									
From the tabulated	l valu	e of the	e F di	strib	ution	one ca	n the		
cription in Table 10.2						one co	ar thei	1 give	the p
cription in rable 10.2									
Table 10.2. Ma	aximur	n degree	needed	l in p	olynom	ial ann	rouis		
Table 10.2. Ma	aximur	n degree	needed	l in p	olynom	ial app	roxima	tion.	
Table 10.2. Ma $\frac{N-j-1}{N-j}$	aximur 2	n degree 3	needed	l in p	olynom 8	ial app			120
N-j-1	1	T	1	-	1		roximat 20	tion.	120
N-j-1 Reject j^{th} order to 95%	1	T	1	-	1				120
N-j-1	1	T	1	-	1				120
N-j-1 Reject j^{th} order to 95%	1	T	1	-	1				120

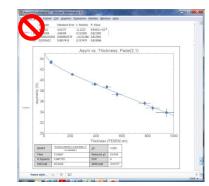

Comparison of fitting functions for asymmetry zero thickness extrapolation

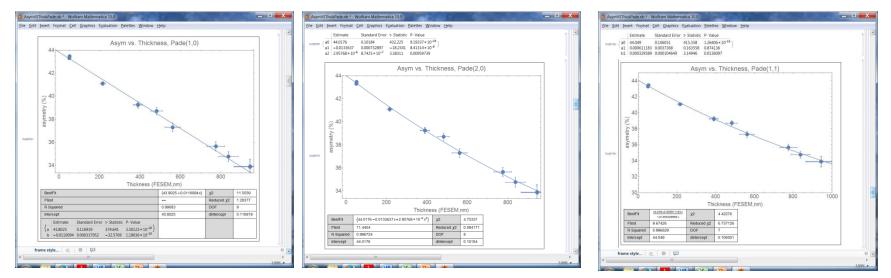

- Two ways to look at data
 - Asymmetry vs. Thickness
 - Asymmetry using Daniel's best data: -0.5σ +2.0 σ, background subtracted
 - FESEM thickness, 500 nm point fixed to best average
 - Asymmetry vs. Rate

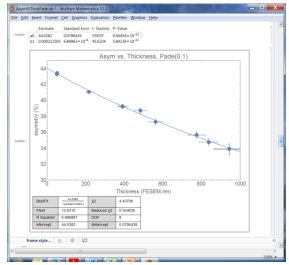

Asymmetry vs. Thickness







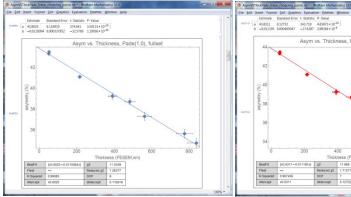


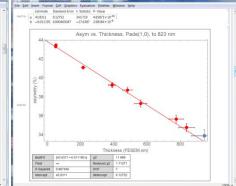

Y error bars have been manipulated to have the x uncertainty included since mathematical typically only fits with y uncertainty. Pade (0,1) (typical fit) used to transform error bars

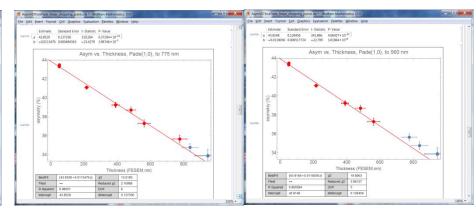
Pade(n,m) orders: Asy vs. Thick

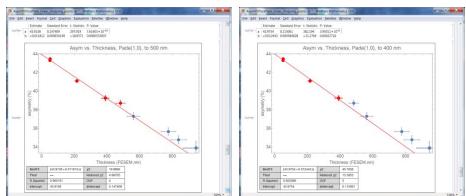
Pade(n,m)	intercept	dA	R ²	red. χ²	d.o.f.	Ftest
(1,0)	43.8025	0.1169	0.991	1.28	9	
(2,0)	44.0176	0.1018	0.997	0.594	8	11.45
(3,0)	44.1777	0.128	0.997	0.546	7	3.15 (rej F test)
(0,1)	44.0382	0.0786	0.997	.554	8	11.23
(0,2)	44.0484	0.1057	0.997	0.737	7	0.022 (rej ftest)
(1,1)	44.049	0.1061	0.997	0.737	7	9.67
(1,2)	44.0295	0.0986	0.997	0.870	6	0.083 (rej. Ftest)
(2,1)	45.0432	4.014	0.9977	0.6104	6	2.25 (rej. Ftest)

Potential fits: not statistically rejected

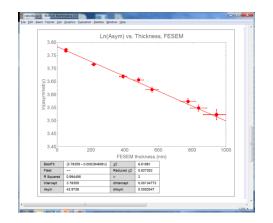


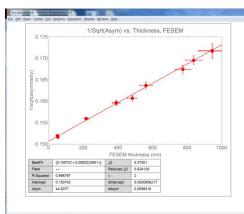



Pade(n,m)	Asym(%)	dA	
(1,0)	43.8025	0.1169	linear
(2,0)	44.0176	0.1018	
(0,1)	44.0382	0.0786	Normal fit
(1,1)	44.049	0.1061	
averaged	44.0352		


Zero thickness extrapolation largely independent of fit function used, assuming statistically reasonable fits Error bars shown in y include x errors – need to fix graphs

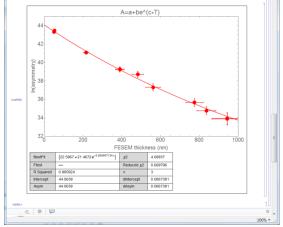
Linear fit: how many points?





Points kept (of 11)	Asym	dA
5	43.9754	0.115
6	43.916	0.147
7	43.915	0.128
8	43.853	0.137
9	43.833	0.128
all	43.803	0.117

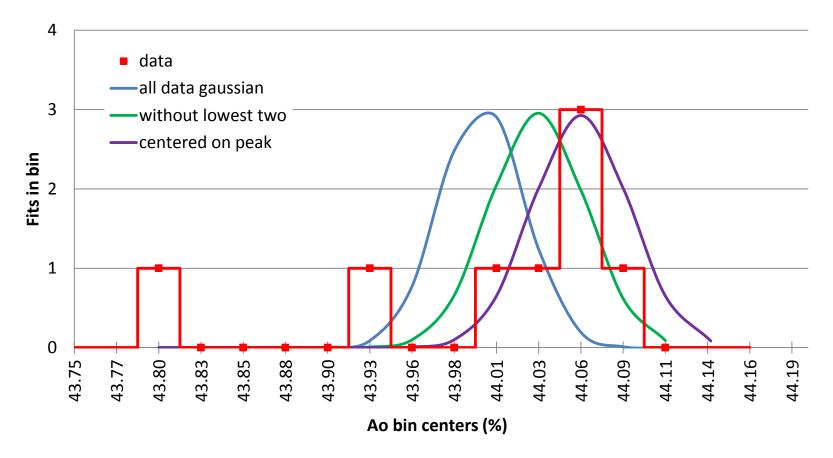
asym_durning_gay.nb - Wolfram Mathematica 10.0 1/Asym vs. Thickness, FESEM 0.030 0.028 e 0.026 ² 0.024 0.022 0.020 FESEM thickness (nm) BestFit 4.48581 Ftest Reduced x2 0.560726 R Squared 0.9968/ dintercept 0.0000282891 0.0227044 intercept sym 0.0548783



Other functional forms have been used historically to fit asym. vs. thickness

- $\ln(A) = a + b * T$
- $\frac{1}{A} = a + b * T$ (similar to inverting standard)

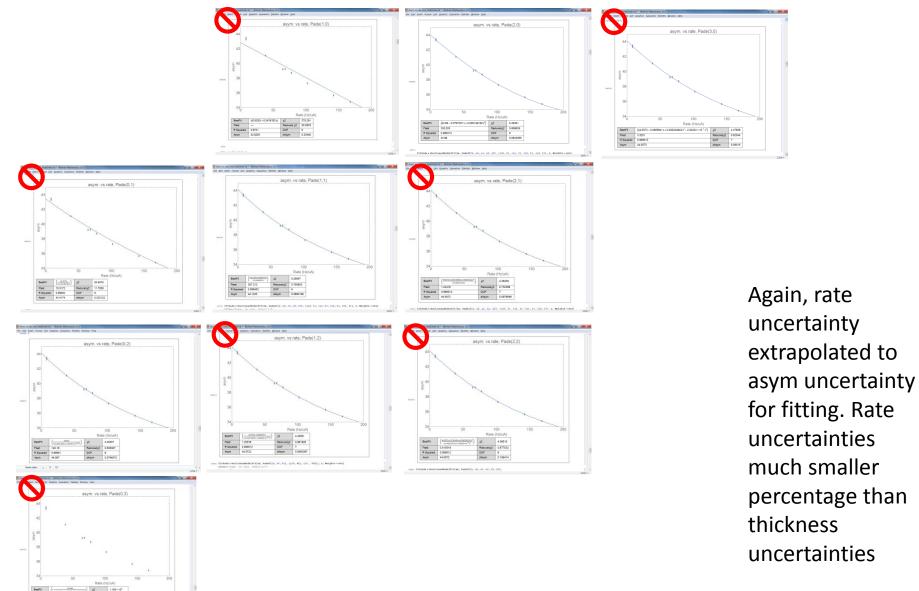
•
$$\frac{1}{\sqrt{A}} = a + b * T$$


A=a+b*e^(c*T)

Form	Asym(%)	dA	Red. Chi sq	DOF
ln(A)=a+bT	43.914	0.059	0.827	9
1/A=a+bT	44.044	0.0549	0.561	9
1/vA=a+bT	44.008	0.0558	0.634	9
A=a+b*e^c*T	44.064	0.0867	0.670	8

Variation of Ao with fitting function

Frequency of Ao for various fits

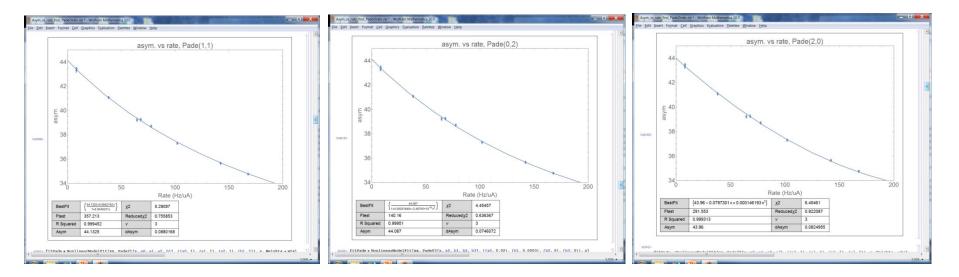

Consider Asym vs. Rate instead?

- Plot Asymmetry vs. average detector rate
- Run one data only thus far, "gold" cuts

 -0.5σ to +2 σ , bkg subtract

- x-error bars turned into y-errors (using Pade (1,1))
- Fitted Pade(n,m) orders until F test started failing

Pade orders: Asym vs. Rate


Pade(n,m) orders: A vs rate

Pade(n,m)	intercept	dA	R ²	red. χ²	Ftest	D.o.F	
(1,0)	4 2.8	.335	.97	31		9	Reject chi
(2,0)	43.96	.082	.999	0.807	333	8	
(3,0)	44.06	.090	.999	0.930	2.84	7	Reject F
(1,1)	44.133	.088	.999	0.756	357	8	
(2,1)	44.067	.098	.999	0.732	1.22	7	Reject F
(1,2)	44.072	.095	.999	0.882	1.21	7	Reject F
(0,1)	43.42	.223	.991	11.7	15.51	9	Reject chi
(0,2)	44.087	0.075	0.999	0.636	140.16	8	
(0,3)	Doesn't converge					7	
(2,2)	44.057	.156	.999	0.87	.0105	6	Reject F

Viable fits: A vs. R

Pade(n,m)	intercept	dA
(2,0)	43.96	.082
(1,1)	44.133	.088
(0,2)	44.087	0.075
average	44.058	

Haven't yet run other forms: square roots, In, exponential with A vs. R data

Summary of non-excluded fits

	Pade(n,m)	intercept	dA	R ²	red. χ²	Dof	Ftest
	(2,0)	43.96	.082	.999	0.807	8	333
vs. R	(1,1)	44.133	.088	.999	0.756	8	357
	(0,2)	44.087	0.075	0.999	0.636	8	140.16

vs. T	Pade(n,m)	intercept	dA	R ²	red. χ²	d.o.f.	Ftest
	(1,0)	43.8025	0.1169	0.991	1.28	9	
	(2,0)	44.0176	0.1018	0.997	0.594	8	11.45
	(0,1)	44.0382	0.0786	0.997	.554	8	11.23
	(1,1)	44.049	0.1061	0.997	0.737	7	9.67

vs. T

Form	Asym(%)	dA	
ln(A)=a+bT	43.914	0.059	
1/A=a+bT	44.044	0.0549	~Normal fit
1/vA=a+bT	44.008	0.0558	
A=a+b*e^c*T	44.064	0.0867	

Conclusions

- Fitting A vs. T: std. fit form gives lowest uncertainties
- Use Pade analysis, F-testing to determine other viable functional forms
- Fitting A vs. Rate: 3 forms have viable fits, uncertainties all comparable to best in A vs. T
- Translating x uncertainties to y axis (done by root, this mathematica analysis) requires model dependence, likely not a large error factor.