

Nuclear Astrophysics with γray beams

Claudio Ugalde University of Illinois

¹²C(α,γ)¹⁶O Reaction

Key reaction for nucleosynthesis in massive stars, progenitors of Type Ia Supernovae, White Dwarf ages.

Affects the synthesis of most of the elements of the periodic table

Determines whether for a given initial mass, a star will become a black hole or a neutron star

Sets the C to O ratio in the universe

The variation of the C/O ratio in the progenitor might be a cause of the variation of SNIa brightness

Determines the minimum mass a star requires to become a core collapse supernova

Affects the constraints on the age of stellar populations from White Dwarfs

Rolfs and Rodney, 1988

Our approach: Inverse reaction + Bubble chamber + γ ray beam

•Extra gain (x100) by measuring time inverse reaction

- •The target density up to x10⁶ higher than conventional targets.
- Superheated water will nucleate from α and ^{12}C recoils
- The detector is insensitive to γ -rays (at least 1 part in 10¹¹)

Oxygen bubble chamber

Liquid target (internal detection) The bubble chamber

Donald A. Glaser Nobel Prize in Physics, 1960

Phys. Rev. **87,** 665 (1952).

Some Effects of Ionizing Radiation on the Formation of Bubbles in Liquids*

DONALD A. GLASER University of Michigan, Ann Arbor, Michigan (Received June 12, 1952)

Ingredients:

- Superheated liquid
- Ionizing radiation

Superheating of liquids

Water

 N_2O thresholds, Superheat = 3.3 °C, E γ =8.5 MeV

Ranges in water

Bubble growth and quenching. ${}^{19}F(\gamma,\alpha){}^{15}N$ in R134a

$\Delta t = 10 \text{ ms}$

Bremsstrahlung beams

CEBAF 12 GeV

Commissioning: ${}^{19}F(\gamma,\alpha){}^{15}N$

Fluorine nucleosynthesis

Possible scenarios:

a) Neutrino spallation in core collapse SN

b) He intershell in AGB stars

c) Core He burning in Wolf-Rayet stars

¹⁵N(α,γ)¹⁹F still uncertain at stellar temperatures

May 2018 Run **Jefferson Lab**

 C_3F_8

p ~ 5.5 MeV/c

Wilmes et al. (2005)

Conclusions

Provided a proof of principle of operation of the bubble chamber as a low rate counter for use with γ -ray beams.

Ideal for nuclear astrophysics applications.

Bremsstrahlung radiation from the injector

Main challenges:

- Maximize beam intensity
- Minimize electron beam energy spread
- Minimize photo neutrons reaching bubble chamber
- Need excellent characterization of γ-ray beam properties