

Polarized Positron for CEBAF

S. Habet^{1,2}, Y. Roblin², R.M. Bodenstein², S.A. Bogacz², L. Fanglei², J. Grames², A. Hofler², R. Kazimi², R. Suleiman², A. Sy², D. Turner², A. Ushakov1, C.A. Valerio-Lizarraga³, E. Voutier¹

¹Université Paris-Saclay, CNRS/IN2P3/IJCLab, 91405, Orsay, France, ²Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, ³Universidad Autóboma de sinaloa, 80010 Culiacàan, México

Abstract

- The JLab positron source uses the Polarized Electrons for Polarized Positrons (PEPPo) technique to produce highly polarized positrons.
- Production of high polarization positron beam (I > 100 nA, P=60%), or a high intensity polarized poistron beam (I > 3 μ A), from an intense highly polarized electron beam (I=1 mA, P=90%).
- The current design involve a new injector dedicated to positron production aty JLab.

Legend

T : Tungsten target. **AMD : Adiabatic Matching** Device MS : Matching Section **CP : Magnetic Chicane DeAc : Decelerating/** Accelerating cavity

ChC : Chirping cavity.

អ្ន 10 -

0.2 g

CEBAF requirements

Parameters	Unit	Value
Mean Energy	Mev	123
$\delta p/p$	%	$\pm 2\%$
Emittance ϵ	mm-mrad	\leq 40 mm-mrad
Bunch length	\mathbf{S}	$\leq 4 \text{ ps}$
Transverse rms	mm	$\leq 3 \text{ mm}$

Conclusion

- The CEBAF requirments makes the positron project very challenging.
- A new positron injector may be assembled at the Low Energy Recirculator Facility (LERF) and may be connected to the CEBAF accelerator through an arc.
- One of the futur challenge is to decrease the positron momentum dispersion from from $\delta p/p = \pm 10\%$ to $\pm 2\%$, a set of cavities will serve this purpose.

One of the future possibilities for beam compression is the CEBAF arcs, which could be used for a compression • with an appropriate chirping cavity.

References

[2] H. Wiedemann. Particle Accelerator Physics. Springer- Link: Springer e-Books. Springer Berlin Heidelberg 2007. isbn: 9783540490456.