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Mott Location

@ Located in the injector.
@ Measures transverse polarization
close to the source.

@ Along with spin rotators, sets
spin direction for experiments.

.
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Mott Scattering Asymmetry
The eA cross section can be written
a(0)=1(0)[1+ S(O)P - n]

. / . .
with n = % If P is horizontal, we measure an up-down asymmetry,

In actuality we use the cross-ratio method:

1- NI N
— with r=,|-b
T NUND

Aup =

The cross-ratio method is insensitive to false asymmetries at all orders
from detector solid angle and efficiency, beam current, and target thickness
and at first order from polarization differences and scattering angle.
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Mott Layout

Our target inventory
includes Au, Ag, and
Cu foils. Mirrors for

OTR light.
Osc = 176.4°4+0.45°.
dQ = 0.21 msr.
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Typical Run Parameters

JLab MeV Mott

Ibeam 1.0 ,uA
Beam Energy | 5.0 MeV
Event Rate 1 kHz
Spin Flip Rate 30 Hz
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Polarimeter Optimization
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@ Designed to run at 5 MeV.

-4
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Scattering Angle, 8 (degree)

o Figure of Merit, €(8) = 1(0)S(9)?, is inversely related to JP.
e Can measure to JA ~ 0.5% stat. using typical setup (1uA on 1 um

Au) in 5 minutes.
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Detectors
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Data Aquisition
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FADC channels for E and AE detectors records event pulse height at
sample rate of 250 MHz.

No dead-time issues with < 5 kHz means currents up to =~ 5 pA
possibles. Plans to circumvent this with block readout.

Encodes events with delayed helicity to supress in-time helicity pickup.

TDCs provide time-of-flight with 35 ps resolution.
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Multiple Scattering and Effective Sherman Function
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Au Target Thickness (um)
@ Systematic study in 2000 conclude 1.1 % total uncertainty dominated
by Sherman function.
@ Recent measurements agree but not at the 1 % level.
@ Two-fold path for improving measurements:

©@ GEANT4 modeling and theoretical inputs for better systematics.
© Reducing backgrounds through hardware updates.
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Detector Spectrum
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Asymmetry Vs.
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@ Shoulder carries carries almost full strength of the physics asymmetry.

@ Possible that these are good events loosing energy between the target
and detector. Excluded from the asymmetry calculation.
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GEANT4 Modelled Apparatus

@ Fires beam from the target to
the detectors.

@ Contains realistic handling of
optical photons generated by
scintillation and cerenkov
processes.
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GEANT4 Simulated Spectra

E Spectra
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@ Blue: “Vacuum" (i.e. beamline
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primary vertex and the E
detector). Monoenergetic beam
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GEANT4 Simulated Spectra

E Spectra
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GEANT4 Simulated Spectra

E Spectra
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GEANT4 Simulated Spectra
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GEANT4 Simulated Spectra
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GEANT4 Simulated Spectra
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GEANT4 Simulated Spectra
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GEANT4 Comparison

E Spectra

@ Blue: Vacuum

=

@ Red: Passes through 5 um Au
10" foil.

o Black: Actual 1 um Au data.

@ Conclusions about shoulders:

© ~'s in the detector are a large
part.

@ Radiative losses in window
and scraping on collimator
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[ © More work is needed to
10°E o describe the loss of physics
0 1

4 5
Energy (Mev) asymmetry.
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Beam Dump Background
@ 1.0" thick 8" diameter Al plate.
o Large amount (% varies with d and E) of backscatter from dump
makes it into the detectors.
@ Can’t separate out using TDC cuts in typical running conditions,
since bunches come every 2 ns.

12 ns to Dump ‘
!

,,,,,,,,,, —>

"Good" event |-
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ToF Selection
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Rep-rate Issues
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@ Dump contributes as much as 8% of signal under elastic peak (2 o)
on 1l um Au.

@ When we run at high rep rate, can no longer remove background.

@ Proposed Solution: switch to a low Z material in the beam dump.
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Backscatter Solution: BeCu Dump-Plate
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Fic. 8. Dependence of total backscattering coefficient Using 0.25" Be backed by 0.75" Cu
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Tabata predicts a factor of ~# 10 ¢ 4 over Al

reduction.
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Future Plans

@ Use input from theorists to implement Mott physics with smallest
uncertainties possible.

@ Transition from modelling detector response to modelling whole
polarimeter — numerically predict A(d).

© Put new hardware (beam dump, target ladder ...) in place.

© Ready to take beam whenever it comes back.
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Thermal model of Mott Dump

2
v Lo oMyt
dx g

¢ peam = 1044
No contact of Be disk back to Cu disk front
Contact on Be disk side only

-

39,998 Min
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Electron-Nucleus Scattering

Electron moves in the nuclear Coulomb field, E = %;?r. Magnetic field

induced in electron’s frame, B = —%v x E. Therefore
Ze Ze
B = —3rxXv= 3 L
cr mcr

Magnetic field couples to the electron’s spin Vs, = —p, - B. Scattering
potential :

2
V(r,L,S) = Ve(r) + Veo(r,L,S) = Ze, 2o

r 2m2c2r3L S
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Detailed Sherman Function

The single scattering cross-section for a point like nucleus is
a(@)=1(0)[L+ S(O)P - n]

k><k . . -
with n = Tk The spin-averaged cross section is

me\? [ [ Ze?\*? OO
1(6) = (7) (m_cﬁ) =5 Gy + con2(0/2)
and S(#) is the Sherman Function,

2 (mc 2 [ Ze? 1 N
50) = 105 () (255) Yarmy O+ F(0)0)
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