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Mott Location

Located in the injector.

Measures transverse polarization
close to the source.

Along with spin rotators, sets
spin direction for experiments.
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Mott Scattering Asymmetry

The eA cross section can be written

σ(θ) = I (θ) [1 + S(θ)P · n]

with n = k×k′

|k×k′| . If P is horizontal, we measure an up-down asymmetry,

AUD =
σU − σD

σU + σD
= S(θ)P.

In actuality we use the cross-ratio method:

AUD =
1− r

1 + r
with r =

√√√√N↑UN
↓
D

N↓UN
↑
D

.

The cross-ratio method is insensitive to false asymmetries at all orders
from detector solid angle and efficiency, beam current, and target thickness
and at first order from polarization differences and scattering angle.
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Mott Layout

Our target inventory
includes Au, Ag, and
Cu foils. Mirrors for
OTR light.
θsc = 176.4°±0.45°.
dΩ = 0.21 msr.

Typical Run Parameters

Ibeam 1.0 µA

Beam Energy 5.0 MeV

Event Rate 1 kHz

Spin Flip Rate 30 Hz
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Polarimeter Optimization
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Designed to run at 5 MeV.

Figure of Merit, ε(θ) = I (θ)S(θ)2, is inversely related to δP.

Can measure to δA ≈ 0.5% stat. using typical setup (1µA on 1 µm
Au) in 5 minutes.
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Detectors

≈ 3% energy resolution.

Coincidence trigger on E+∆E
detectors vetos DAQ against γs.
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Data Aquisition

FADC channels for E and ∆E detectors records event pulse height at
sample rate of 250 MHz.

No dead-time issues with < 5 kHz means currents up to ≈ 5 µA
possibles. Plans to circumvent this with block readout.

Encodes events with delayed helicity to supress in-time helicity pickup.

TDCs provide time-of-flight with 35 ps resolution.
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Multiple Scattering and Effective Sherman Function

A(θ, d) = PSeff (θ, d)

=
PS(θ)

1 + α(θ)d

Systematic study in 2000 conclude 1.1 % total uncertainty dominated
by Sherman function.

Recent measurements agree but not at the 1 % level.

Two-fold path for improving measurements:
1 GEANT4 modeling and theoretical inputs for better systematics.
2 Reducing backgrounds through hardware updates.
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Detector Spectrum

LEFT E (Chan)
1000 2000 3000 4000 5000 6000 7000

LE
F

T
 D

et
ec

to
r 

(E
ve

nt
)

0

100

200

300

400

500

600

700

800

900
h1

Entries  413639
Mean     3797
RMS      1408

 / ndf 2χ   6582 / 657
p0        33.5±  2494 
p1        0.0000045± -0.0009388 
Constant  4.8± 804.6 
Mean      0.8±  5349 
Sigma     0.6±   140 

Does the low energy shoulder
carry asymmetry?

Where does it originate?

Propose to use GEANT4
simulation for two tasks:

1 Attempt to answer above
questions by accurately
modelling detector geometry
and response.

2 Provide insight into A(d) and
S(d) by determining effects of
target thickness directly.
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Asymmetry Vs. Energy

Shoulder carries carries almost full strength of the physics asymmetry.

Possible that these are good events loosing energy between the target
and detector. Excluded from the asymmetry calculation.
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GEANT4 Modelled Apparatus

Fires beam from the target to
the detectors.

Contains realistic handling of
optical photons generated by
scintillation and cerenkov
processes.
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GEANT4 Simulated Spectra
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Blue: “Vacuum” (i.e. beamline
vacuum only between the
primary vertex and the E
detector). Monoenergetic beam
of 5 MeV in all cases.

Red: Added ∆E detector.
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GEANT4 Simulated Spectra
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Red: ∆E detector + Air.
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: ∆E detector, Air + Al
nose and Pb cap.
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: ∆E detector, Air, Al nose
and Pb cap + 8 mil Al window
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: All components in place.
Illuminating entire acceptance.
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: All components in place.
Illuminating entire acceptance.
Passes through 5 µm Au foil.
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GEANT4 Simulated Spectra
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Blue: Vacuum

Red: All components in place.
Illuminating entire acceptance.
Passes through 5 µm Au foil.
Added 0.05 MeV spread to
thrown electron energy.
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GEANT4 Comparison
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Red: Passes through 5 µm Au
foil.

Black: Actual 1 µm Au data.

Conclusions about shoulders:
1 γ’s in the detector are a large

part.
2 Radiative losses in window

and scraping on collimator
also contribute.

3 More work is needed to
describe the loss of physics
asymmetry.
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Beam Dump Background
1.0” thick 8” diameter Al plate.
Large amount (% varies with d and E ) of backscatter from dump
makes it into the detectors.
Can’t separate out using TDC cuts in typical running conditions,
since bunches come every 2 ns.
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ToF Selection

Total rate from dump
comparable to or greater than
rate from target in thinner foils.

Effects shoulder and lower
elastic peak.

Using new DAQ, can select for
only in-time events with low rep
rate.
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Rep-rate Issues

Dump contributes as much as 8% of signal under elastic peak (2 σ)
on 1 µm Au.

When we run at high rep rate, can no longer remove background.

Proposed Solution: switch to a low Z material in the beam dump.
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Backscatter Solution: BeCu Dump-Plate

Tabata predicts a factor of ≈ 10
reduction.
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Using 0.25” Be backed by 0.75” Cu
(red) we see a reduction by a factor
of 4 over Al.
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Future Plans

1 Use input from theorists to implement Mott physics with smallest
uncertainties possible.

2 Transition from modelling detector response to modelling whole
polarimeter → numerically predict A(d).

3 Put new hardware (beam dump, target ladder ...) in place.

4 Ready to take beam whenever it comes back.
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The End
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Thermal model of Mott Dump

• No contact of Be disk back to Cu 
disk front

• Contact on Be disk side only
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Electron-Nucleus Scattering

Electron moves in the nuclear Coulomb field, E = Ze
r3 r. Magnetic field

induced in electron’s frame, B = − 1
c v × E. Therefore

B =
Ze

cr3
r × v =

Ze

mcr3
L

Magnetic field couples to the electron’s spin Vso = −µs · B. Scattering
potential :

V (r ,L,S) = VC (r) + Vso(r ,L,S) =
Ze

r
+

Ze2

2m2c2r3
L · S.
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Detailed Sherman Function

The single scattering cross-section for a point like nucleus is

σ(θ) = I (θ) [1 + S(θ)P · n]

with n = k×k′

|k×k′| . The spin-averaged cross section is

I (θ) =

(
mc

p

)2
[(

Ze2

mcβ

)2 (
1− β2

) |f (θ)|2

sin2(θ/2)
+
|g(θ)|2

cos2(θ/2)

]

and S(θ) is the Sherman Function,

S(θ) =
2

I (θ)

(
mc

p

)2( Ze2

mcβ

) √
1− β2

sin(θ/2)
[f (θ)g∗(θ) + f ∗(θ)g(θ)]
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