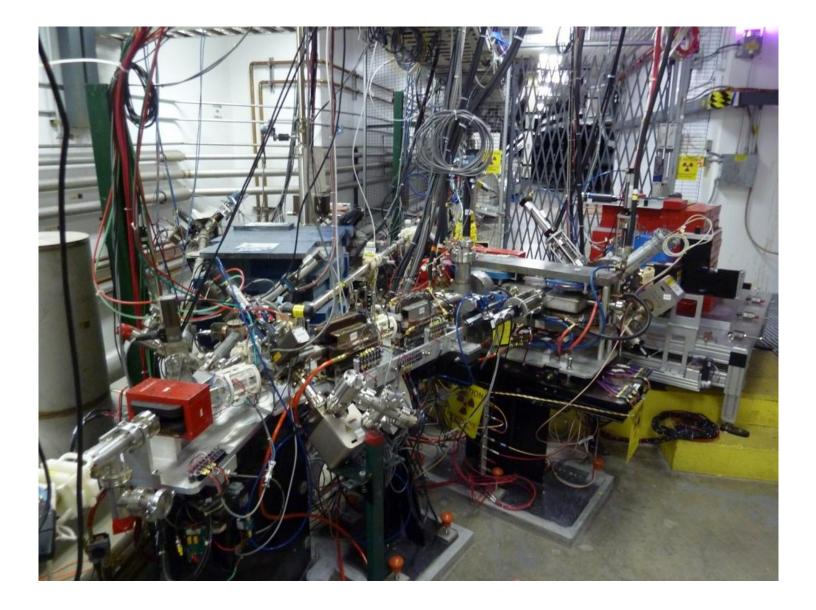
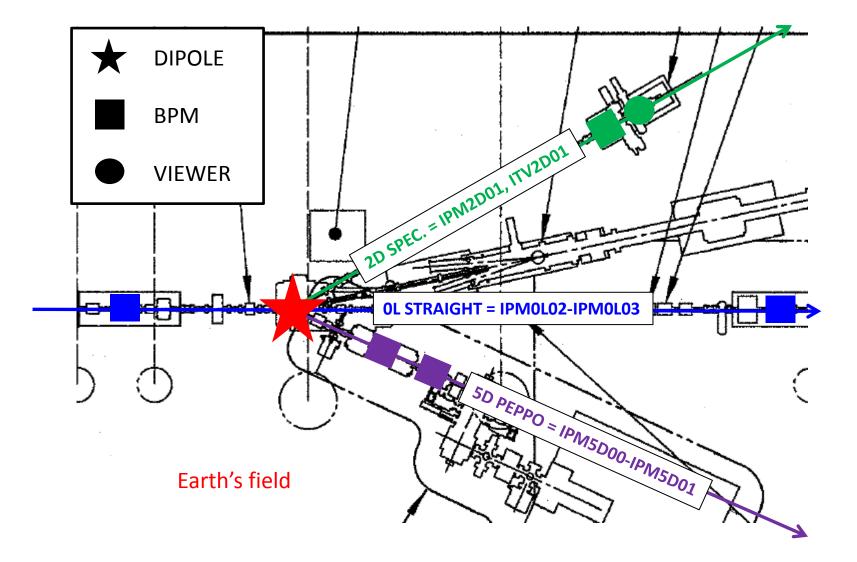
Momentum Setup and Measurement for PEPPo

Joe Grames July 10, 2013

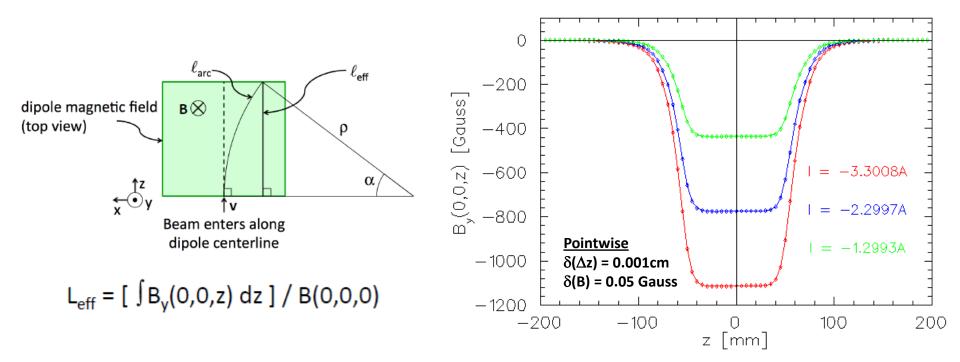

- ✓ Recollection of conditions
- ✓ Beam line elements
- ✓ Momentum analysis

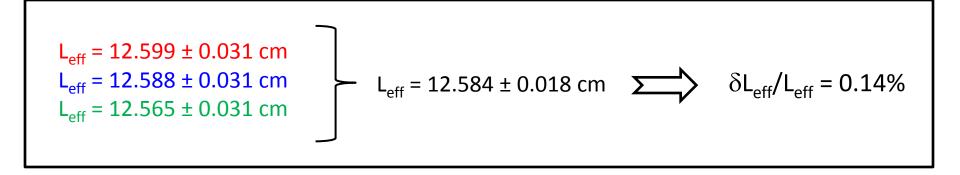
Recollection of conditions


History...

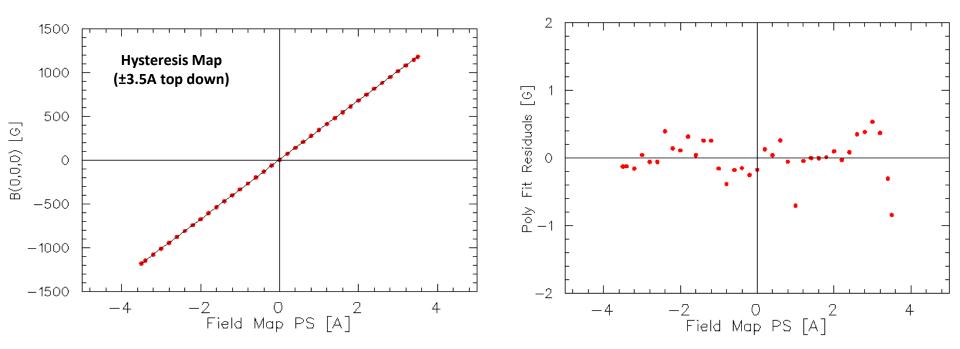
- Configuration momenta "names" only approximate
- 21 optimized cryounit settings were determined
- 6 cryounit settings used for PEPPo experiment
 - Mott Electron Polarimetry (5.5)
 - Compton Analyzing Power Calibration (3.2, 4.2, 5.5, 6.3, 7.3)
 - Positron Production (8.2)
 - Positron Polarimetry (3.2, 4.2, 5.5, 6.3) twice
- e- beam defined momentum, even for e+ collection
- A formula between <u>momentum</u> and <u>dipole current</u> was used during the experiment
- A more detailed analysis is presented now

Beam line elements - photo


Beam line elements - layout



Momentum analysis – contributing factors

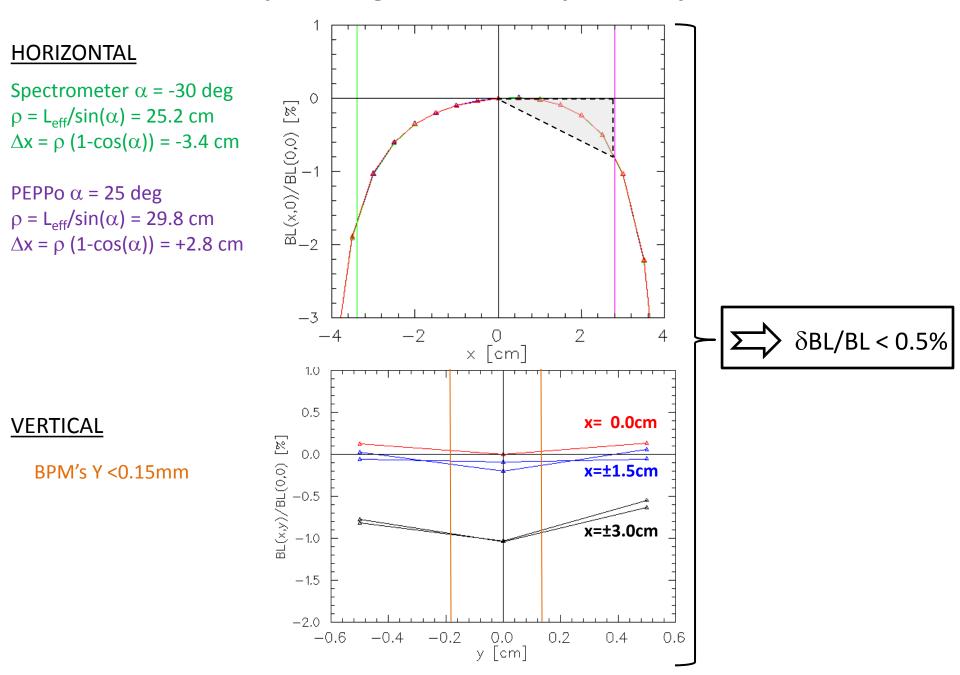

- 1. Dipole magnetic field
 - model
 - current dependence
 - spatial uniformity
 - settling time and reproducibility
- 2. Dipole magnet power supplies
 - field mapping
 - tunnel operation
- 3. Alignment of elements
 - surveys
 - BPM calibration
- 4. Diagnostic accuracy
 - BPM vs. viewer
- 5. Stray magnetic fields
 - (un)shielded beam line
 - fixed steering coils

Dipole magnetic field – model

Dipole magnetic field – current dependence

$$B = U_0 + U_1 \cdot |^1 + U_2 \cdot |^2 + U_3 \cdot |^3$$

$$U_0 = 6.5659 \pm 0.0737$$


$$U_1 = 339.78 \pm 0.06$$

$$U_2 = -0.47767 \pm 0.01222$$

$$U_3 = -0.19932 \pm 0.00672$$

$$\delta B/B < 0.2\%$$

Dipole magnetic field – spatial dependence

Dipole magnetic field – settling time and reproducibility

SETTLING TIME

Part 3: Core Magnetic Field Data								
Instruction:	Cycle magne	et current to	+/- 3.5A					
twice and me	easure dipole	e field B vs. t	at -2.3A.					
Elapsed Time		P (C)						
(min:sec)	I (A)	B (G)						
00:05	-2.300	-774.85						
00:20	-2.300	-774.85						
01:00	-2.300	-774.85						
02:00	-2.300	-774.85						
03:00	-2.300	-774.85						
04:00	-2.300	-774.85						
05:00	-2.300	-774.85						

REPRODUCIBILITY

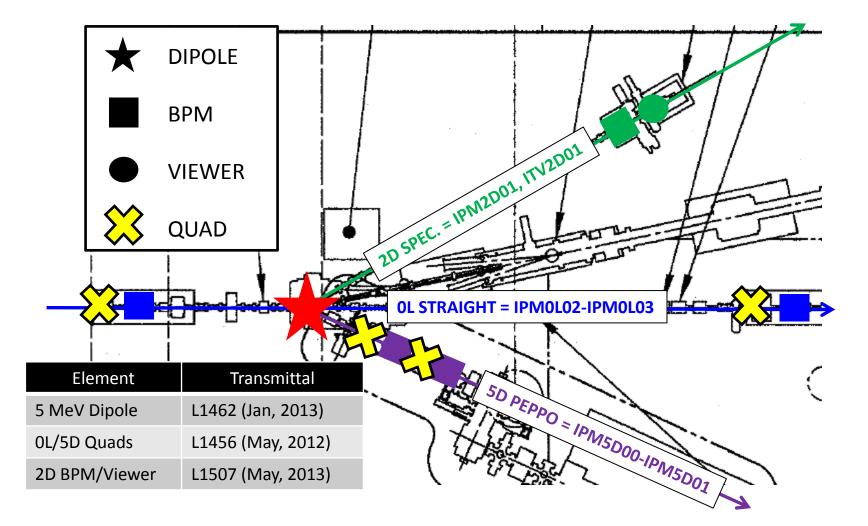
<u>Instruction</u>: Cycle magnet current to +/- 3.5A twice and measure dipole field at -2.3A. Next, immediately remove power to magnet. After restoring power, cycle magnet current to +/- 3.5A twice and measure dipole field at -2.3A.

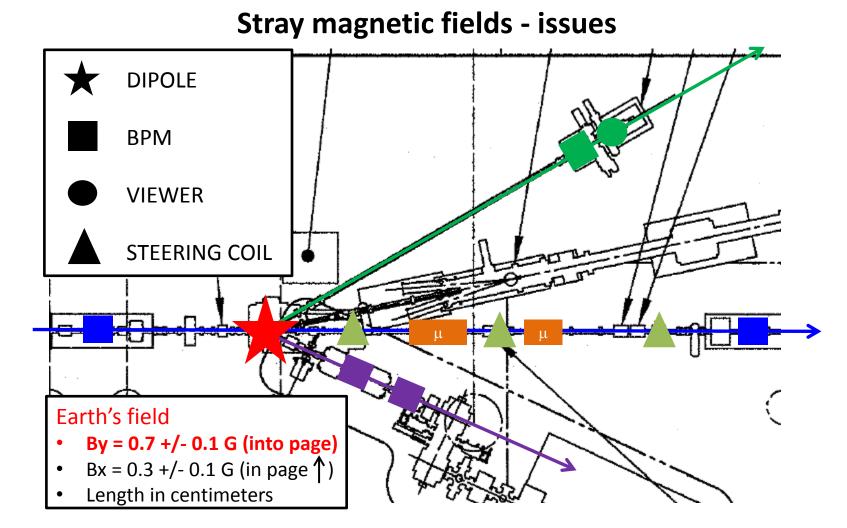
Run	B (G)	Deviation from Average (%)
0	-774.90	-0.09%
1	-774.25	-0.01%
2	-773.90	0.04%
3	-773.95	0.03%
4	-774.30	-0.01%
5	-773.85	0.04%
6	-774.05	0.02%
7	-774.30	-0.01%
Average	-774.19	

Dipole magnet power supplies

Field Mapping

- Magnet was mapped in 2008 with 10 Amp power supply
- Reported power supply accuracy <1mA

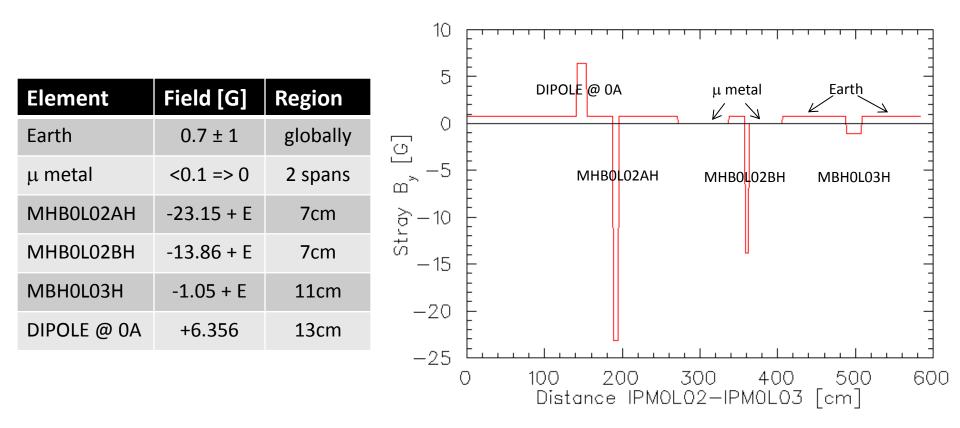

Tunnel Operation


- Standard 10 Amp trim power supply used (IN02B26-9)
- Typical accuracy of most recent calibration <5mA

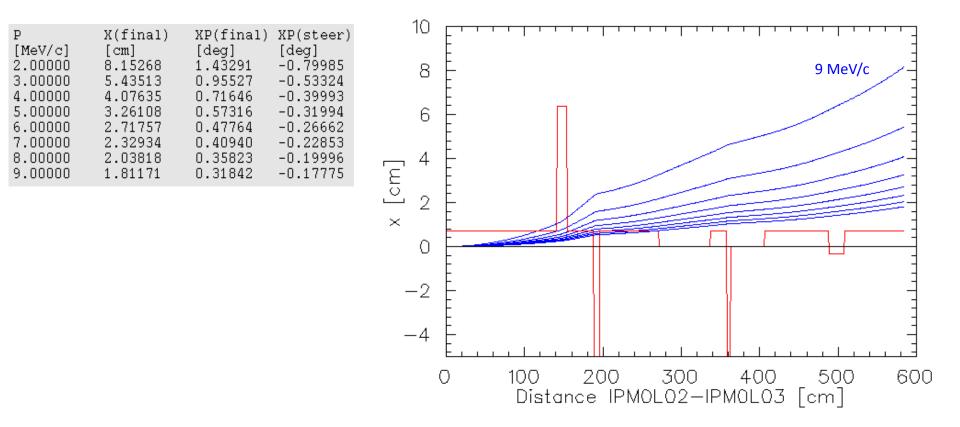
$$\delta I/I = 0.05\%$$

Alignment of elements – surveys and BPM calibration

- ✓ Elements are surveyed to < 0.2mm</p>
- ✓ BPM's are calibrated to upstream quad
- ✓ BPM resolution is <0.02mm; typical beam jitter <0.05mm</p>
- ✓ Viewer resolution estimated at 2.5mm



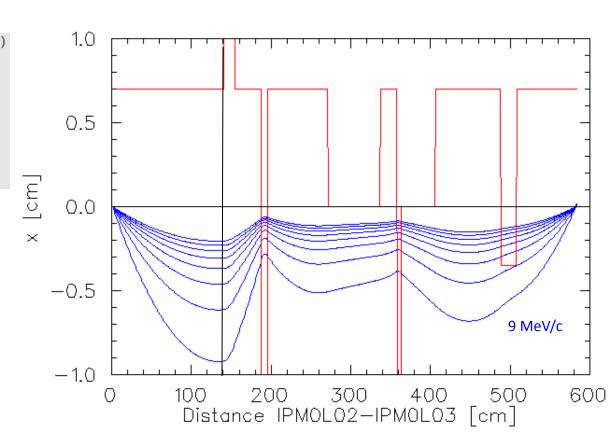
- > 3 steering coils remained ON and fixed throughout e- momentum measurements
- The purpose of the coils is to compensate the Earth's field over long distance


The stray magnetic fields represent the largest factor in the momentum analysis

- 1. Divide 584cm distance between IPM0L02 and IPM0L03 into 1cm steps
- 2. Assign fixed stray magnetic field into each 1cm step according to table

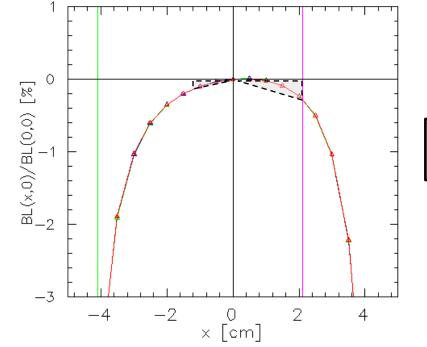
Note: integrated Earth and steering coils fields are 400G-cm and -271 G-cm respectively

- 3. Assuming a normal launch ($x_0 = x'_0 = 0$) calculate trajectory from 2-9 MeV/c
- 4. Experimentally both x_0 and x_F were zero within <0.02 cm
- 5. This was achieved by variable "allowed" steering coils upstream of IPM0L02

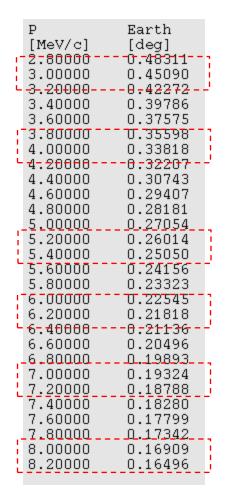

- 5. Applying the calculated steering correction achieves measured BPM values
- 6. The relevant values for momentum calculation are x_{dipole} and x'_{dipole} at z=141cm

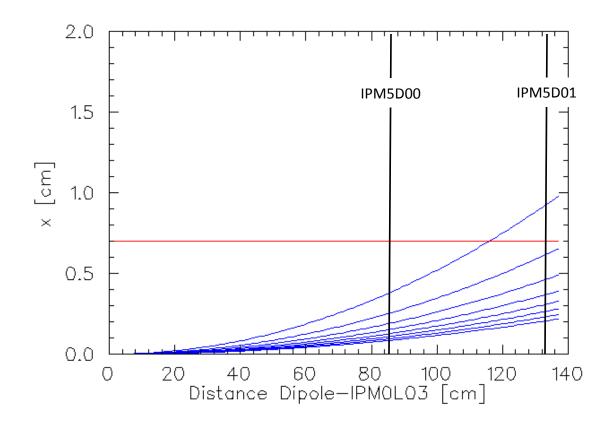
Application of Steering

P	XP(steer)	X(final)	XP(final)
[MeV/c]	[deg]	[cm]	[[deg]
2.00000	-0.79985	0.01400	0.63306
3.00000	-0.53324	0.00927	0.42203
4.00000	-0.39993	0.00696	0.31653
5.00000	-0.31994	0.00561	0.25322
6.00000	-0.26662	0.00464	0.21102
7.00000	-0.22853	0.00399	0.18087
8.00000	-0.19996	0.00353	0.15827
9.00000	-0.17775	0.00306	0.14067


Position and Angle at Dipole

P	X(dipole)	XP(dipole)
[MeV/c]	[cm]	[deg]
2.00000	-0.91874	0.04184
3.00000	-0.61251	0.02788
4.00000	-0.45938	0.02091
5.00000	-0.36750	0.01673
6.00000	-0.30626	0.01394
7.00000	-0.26250	0.01195
8.00000	-0.22968	0.01046
8.00000	-0.22968	0.01046
9.00000	-0.20418	0.00929


Position a	and Angle	at Dipole	
P	X(dipole)	XP(dipole)	
[MeV/c]	[cm]	[deg]	
2.00000	-0.91874	0.04184	
3.00000	-0.61251	0.02788	
4.00000	-0.45938	0.02091	
5.00000	-0.36750	0.01673	
6.00000	-0.30626	0.01394	
7.00000	-0.26250	0.01195	
8.00000	-0.22968	0.01046	
9.00000	-0.20418	0.00929	


- 1. Calculations are accurate to 10%
- ➤ 2. Position correction < -0.7cm <u>improves</u> spatial uncertainty
 - 3. Angle correction <0.1% so added as uncertainty

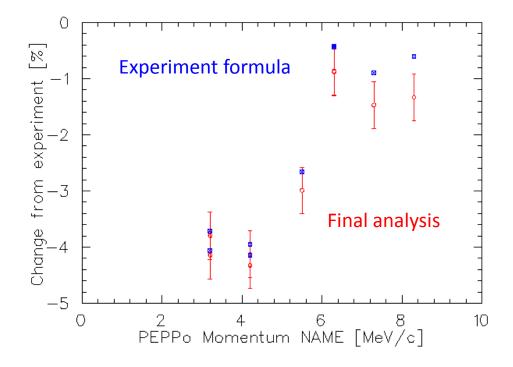
Stray magnetic fields – PEPPo section

Momentum analysis - parameters

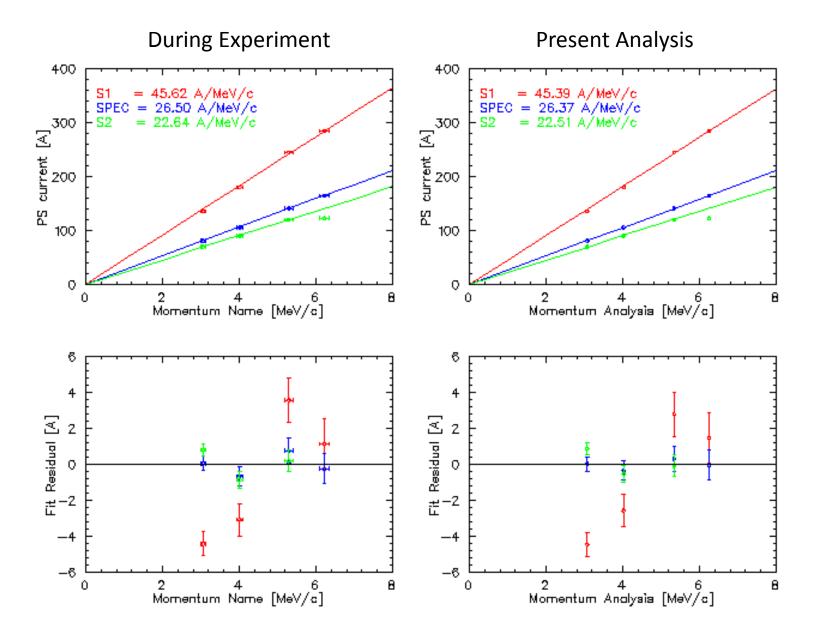
Parameter	Correction	Uncertainty
Dipole – L _{eff}	no	$\delta L_{eff}/L_{eff}$ = 0.14%
Dipole – field map	no	δB/B < 0.2%
Dipole – spatial	no	δ BL/BL < 0.3%
Dipole – settle/reproduce	no	δ B/B < 0.1%
Dipole – power supplies	no	δ Ι/Ι < 0.05%
Position - beam	no	<0.25 mm
Stray magnetic field	yes	10% of correction

Momentum analysis - typical calculation @ "5.5MeV/c"

MBVM [A]	A5 [deg]	dA5 [deg]	0L02x [mm]	0L02y	0L03x	0L03y	5D00x	5D00y	5D01 x	5D01y
			-0.100 -0.041				0.000 -0.346	0.000 -0.225	0.000 0.438	0.000 0.058


 $\Delta(BL) = (B_{DIPOLE}L_{eff})_{PEPPO}$

 $\Delta \Theta = (\Theta_{\text{PEPPO-MEAS}} - \Theta_{\text{PEPPO-CORR}} - \Theta_{\text{STRAIGHT CALCULATED}})$


p [MeV/c] = 2.9980E-4 · Δ (BL[G-cm]) / sin($\Delta\Theta$)

Momentum analysis - results

Name	Cryounit Gradients & Phases (MV & deg)			,			P ± δP (MeV/c)		δΡ/Ρ (%)		
5.5	6.49	121.3	3.31	-154.4	7508.0	30.23	24.95	0.04	5.336	0.023	0.424
4.2	3.56	131.7	3.31	-131.8	5634.0	22.69	24.86	0.04	4.018	0.017	0.430
6.3	8.06	120.0	3.81	-158.4	8784.2	35.37	24.94	0.04	6.245	0.027	0.425
3.2	4.87	127.3	0.00	-158.4	4303.1	17.33	24.78	0.05	3.078	0.014	0.444
7.3	8.06	119.6	5.81	-159.9	10128.1	40.78	24.97	0.04	7.193	0.030	0.424
8.3	8.40	119.1	7.21	-162.2	11538.3	46.46	24.99	0.04	8.189	0.035	0.424
4.2	3.56	131.7	3.31	-131.8	5646.7	22.74	24.86	0.04	4.027	0.017	0.430
6.3	8.06	120.0	3.81	-158.4	8784.2	35.37	24.94	0.04	6.246	0.027	0.425
3.2	4.87	129.2	0.00	-162.2	4290.3	17.28	24.79	0.05	3.067	0.014	0.444

Momentum analysis - connection to collection magnets

Summary

Momenta for Mott polarimetry, Compton electron calibration, positron production and positron collection determined with uncertainty < 0.5%

There appears to be no significant conflict with collection magnet settings

Recommendations for future momentum measurements...

- shield stray magnetic field
- eliminate steering coils
- improve model or dipole with regard to spatial profile
- remember to null spectrometer dipole magnet for straight-ahead
- add BPM and means for beam calibration to spectrometer line

I did not complete the cryounit momentum calibration analysis