

Sajini A. K. Wijethunga^{1,2}, M. A. Mamun², J. R. Delayen¹, G. A. Krafft^{1,2}, R. Suleiman², M. Poelker², J. Benesch², S. Zhang²

¹Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA ²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

INTRODUCTION

APS CNPER Brazilian Center for Resea

Magnetized electron cooling is one of the major approaches towards obtaining the required high luminosity in the proposed Electron-Ion Collider (EIC). In order to increase the cooling efficiency, a bunched electron beam with a high bunch charge and high repetition rate is required. At Jefferson Lab, we generated magnetized electron beams with high bunch charge using a new compact DC high voltage photo-gun biased at -300 kV with bialkaliantimonide photocathode and a commercial ultra-fast laser. This contribution discusses how magnetization affects space charge dominated beam as a function of magnetic field strength, gun high voltage, and laser pulse width, and spot size in comparison with simulations performed using General Particle Tracer.

Emittance The transverse emittance associated with the magnetized beam is given by,

$$\varepsilon_{u} = \sqrt{\varepsilon_{u}^{2} + \varepsilon_{u}^{2}} \qquad \varepsilon_{u} = 0$$

uncorrelated emittance – thermal - small.

- below -300 kV
- K₂CsSb photocathode preparation chamber
- Cathode solenoid operates at a maximum current of 400 A to provide up to 0.1514 T at the photocathode
- Commercial ultrafast laser (<0.5 ps, 20 µJ, 50 kHz, 515 nm) Four focusing solenoids

 $QE = rac{hc}{\lambda e} rac{I}{P} imes 100\%$

 $I_{avg} = Q_{extracted} f$

Results Analysis

• Varied the laser power and measured the average current at the dump

Office of

Science

- Calculated the extracted charge using
- Beam line is modeled using GPT (General Particle Tracer)

Maximum charge extraction possible at the photocathode for available laser power ~14 nC (QE = 6.3%, P = 0.265 mW, f = 50 kHz)

 $\varepsilon_{tot} - \sqrt{\varepsilon_u} + \varepsilon_d$

 ε_d - correlated emittance – magnetization - large.

$$\varepsilon_d = \frac{eB_z r_0^2}{8m_e c}$$

 B_z - Magnetic field at the cathode r_0 - Beam size at the cathode

Magnetic field can generate a canonical angular momentum that increases the total emittance.

Space charge

- <u>Space charge</u>: Accumulation of charges in a particular region
- <u>Space charge forces</u>: Coulomb forces inside the region of charge accumulation
- <u>Space charge effect</u>: Degrade the beam quality, cause instabilities, energy spread, halo formation, particle losses etc.

 Space charge current limitation: Accumulation of space charge next to the cathode limits further emission of charges from the surface.

Simulation Analysis

- Space charge limitations were initiated as early as ~30 nJ and aperture limited beam loss increased with increasing pulse energy
- Observed an increase in measured charge with cathode magnetic field only up to ~100 nC
- Beam scraping due to limited beamline aperture and insufficient strength of the focusing solenoids prohibited clean transport of beam to the dump for pulse energy >70 nC
- GPT agrees fairly well with the measurements only for 0 A cathode solenoid current but extract more charge than measured for 100 A and 200 A cathode solenoid currents
- GPT shows no notable effect of magnetization on space charge current limitation

Measurements

Simulations

- Why GPT shows higher beam extraction?
- Simulation parameters:

Parameter	Value
Gun high voltage [kV]	-225
Magnetic field, B _z at the cathode [T]	0, 0.038,
(0, 100, 200 A)	0.076
Mean Transverse Energy [eV]	0.075
Pulse width, Gaussian (FWHM) [ps]	75
Transverse laser spot size, Gaussian (rms) [mm]	1.64
Bunch charge [nC]	0.01 to 14
Vertical offset of the laser [mm]	1.70

- Measured charge at the dump increased with the higher gun voltage, longer pulse width and larger laser spot size in the clean beam transport regime
- GPT also shows the same trend, but for magnetized beam, higher beam extraction than non magnetized beam
- Less notable dependence of the space charge current limitations on magnetization

Cathode Solenoid current [A]

150

200

100

50

• Due to non-uniform magnetic field, beam size oscillates with the magnetic field (mismatch oscillations)

0.0 0.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

• Thus, the beam loss depend on the cathode solenoid current

250

- Observations from measurement:
 - Less notable effect of magnetization on space charge current limitation
 - The space charge current limitations can be reduced by using a higher gun voltage with larger laser spot size at the cathode and longer pulse width, regardless of the beam being magnetized
- Beam loss due to limited beamline aperture and insufficient strength of the focusing solenoids plays a critical part in the measurements
- Observations from GPT simulation:
- No notable effect of magnetization on space charge current limitation
- Beam loss also depends on the cathode solenoid current

Acknowledgement: This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 and Laboratory Directed Research and Development program.