'Phase Trombone' for HAPPEX

Alex Bogacz

- Suppression of betatron motion driven helicity asymmetries
 - betatron phase 'sweep' to average out helicity asymmetries
- - 'closed beta bump' insert before the Hall A arc (1C01-1C08)
 - independent control in the horizontal and vertical betatron phases (±60 deg.)

• Hall A Optics implementation with eight quads (2 x

2 +2+ <mark>2</mark> = 8)

(Multi knob' control software (Michele Joyce)

@ Phase Trombone Optics ($\Delta \phi_x = 60 \text{ deg}$)

- top plot betatron phase (hor/red, ver/green in units of 2π , mod π); hor. phase advances by 60 deg while the vertical phase stays fixed.
- bottom plot beta functions (hor/red, ver/green);
 optics altered before the arc to accommodate the phase shifts is matched to the design at the beginning of the arc

@ 'Multi knob' algorithm – cubic spline parameterization for 8 quads

MQA1C01

Computed spline coefficients:

S1 := cspline(Mxy,M1)

Fitting function for surface:

$$F1(x,y) := interp \begin{bmatrix} S1, Mxy, M1, \begin{pmatrix} x \\ y \end{bmatrix}$$

Original Surface

Fitted Surface

M1

2	۶.	L	

	1	3
	2	2
	3	0.421
	4	1.333
	5	2.245
	6	0.739
	7	-0.768
	8	0.576
	9	1.629
	10	2.681
	11	-1.014
	12	-4.71
	13	1.707
	14	1.992
	15	2.278
	16	-1.657
	17	-5.591
	18	1.229
	19	1.124
Contraction of the second s	20	1.019
	21	-0.796
	22	-2.611
	23	-3.045
	24	-0.848
	25	1.349
	26	-0.136
	27	-1.62
	28	

0

0

Ö

@ PZT measured helicity asymmetries for various settings of Phase Trombone $(\Delta \phi_x, \Delta \phi_y)$ – as measured by Kent Paschke (May 26, 2004)

PT set	Dx(+/-0.3 μm)	Dy(+/-0.3µm)	Dx'(+/-0.01µrad)	Dy'(+/-0.02 µrad)
(0, 0)	2.0 µm	2.9 μm	-0.19µrad	-0.08 µrad
(30, 0)	1.2 μm	2.7 μm	-0.22µrad	-0.07 µrad
(-30,0)	3.2 μm	2.8 μm	-0.16µrad	-0.0.7 µrad
(30,30)	1.0 μm	1.2 μm	-0.21µrad	-0.12 μrad

- Excellent orthogonality of two independent planes for standard level of betatron match of the Hall A line (done through 8T matching quads).
- e Easy to use software interface GUI (Michele Joyce)