Search for Electric Dipole Moments and Axions/ALPs of charged particles using storage rings

Frank Rathmann
Institut für Kernphysik, Forschungszentrum Jülich
(on behalf of the collaboration)

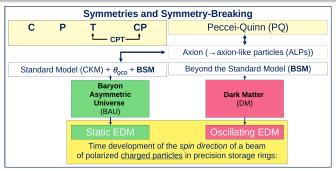
EDM/Storage Rings Meeting

Nov 28 - 30, 2022

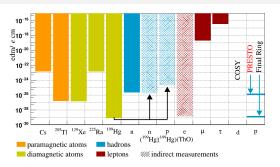
https://wiki.jlab.org/ciswiki/index.php/EDM/Storage_Rings_ Meeting_(29-30_November_2022)

Contents

- Motivation & Status EDM and Axion/ALP searches
- 2 Measurement principles & experimental techniques
- Technical developments
- Recent results
- 5 Staged approach toward dedicated EDM ring
- Summary


Motivation

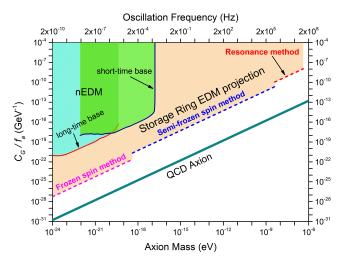
Issues we are addressing


- Matter over antimatter dominance / Baryon asymmetry in the Universe
- Nature of Dark Matter (DM)

Experimental approach

- Measure of static Electric Dipole Moments (EDM) of fundamental particles
- Search for axion-like particles as DM candidates through oscillating EDMs

Status of static EDM searches [2, CYR '21]

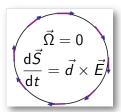

Missing are direct EDM measurements:

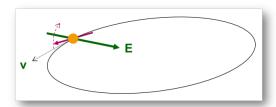
- No direct measurements of electron: limit obtained from (ThO molecule).
- No direct measurements of proton: limit obtained from ¹⁹⁹₈₀Hg.
- No measurement yet of deuteron EDM.

Theory stresses that

EDM of single particle not sufficient to identify CP violating source [1]

Axion Dark Matter search with Storage Ring EDM method


Experimental limits for axion-gluon coupled oscillating EDM measurements (from [3]).


Measurement of EDM in storage ring

Protons at magic momentum in pure electric ring

How to measure EDM of proton:

- 1. Place polarized particles in a storage ring.
- 2. Align spin along direction of flight at magic momentum.
 - ⇒ freeze horizontal spin precession.
- 3. Search for time development of vertical polarization.

Storage ring method to measure EDMs of charged particles:

- Magic rings with spin frozen along momentum of particle.
- Polarization buildup $p_{v}(t) \propto d$.

Spin precession of particles with MDM and EDM

In rest frame of particle

• Equation of motion for spin vector \vec{S} :

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E}. \tag{1}$$

With protons in a ring

 $\rightarrow\,$ Spin-precession with MDMs and EDMs described by Thomas-BMT Equ. [4].

Frozen-spin

Spin-precession of particle MDM relative to direction of flight:

$$\vec{\Omega} = \vec{\Omega}_{\mathsf{MDM}} - \vec{\Omega}_{\mathsf{cyc}}$$

$$= -\frac{q}{\gamma m} \left[G \gamma \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} - \left(G \gamma - \frac{\gamma}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]. \tag{2}$$

- \Rightarrow $\vec{\Omega}=0$ called frozen spin, because momentum and spin stay aligned.
 - In the absence of magnetic fields $(B_{\perp} = \vec{B}_{\parallel} = 0)$,

$$\vec{\Omega} = 0$$
, if $\left(G\gamma - \frac{\gamma}{\gamma^2 - 1}\right) = 0$. (3)

- Possible for particles with G>0: proton (G=1.793) or electron (G=0.001).

For protons: $(3) \Rightarrow magic momentum$:

$$G - \frac{1}{\gamma^2 - 1} = 0 \Leftrightarrow G = \frac{m^2}{p^2} \quad \Rightarrow \quad \boxed{p = \frac{m}{\sqrt{G}} = 700.740 \,\mathrm{MeV} \,\mathrm{c}^{-1}}$$
 (4)

Measurement of EDM in a magnetic ring

First-ever direct EDM measurement using this method

In magnetic ring

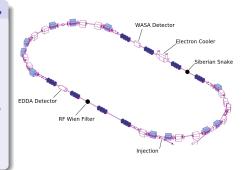
- When external electric fields in the ring vanish, $\vec{E}=0$, the spin motion is governed by the radial field $\vec{E}=c\vec{\beta}\times\vec{B}$, induced by the relativistic motion in the vertical \vec{B} field, so that $\frac{d\vec{S}}{dt}\propto\vec{d}\times\vec{E}$ (see, e.g., [5]).
- ullet But this yields only small oscillation of vertical component p_y due to EDM.
- Use RF Wien filter to accumulate EDM signal [6]:
 - + Long spin coherence time $> 1000 \,\mathrm{s}$ [7]
 - + Spin tune determination $\Delta
 u_s /
 u_s pprox 10^{-10} [8]
 ightarrow ext{tune RF Wien filter frequency}$
 - + Phase-lock of spin phase relative to Wien filter RF [9].
 - + Two-bunch method: pilot and signal bunch
 - pilot bunch shielded from Wien filter RF by fast RF switches
 - pilot bunch ightarrow unperturbed spin precession ightarrow RF Wien filter on resonance.
 - observe p_V oscillations over many periods
 - pilot bunch → co-magnetometer [publ. in prep.]

Accumulated knowledge compiled in

2021 CERN Yellow Report [2]

Strength of EDM resonance

EDM induced polarization oscillation,


can generally be described by

$$p_{y}(t) = a \sin(\Omega^{p_{y}} t + \phi_{RF}),$$

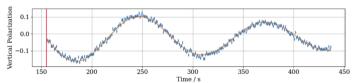
y perpendicular to ring plane.

• EDM resonance strength defined as ratio of angular frequency Ω^{p_y} to orbital angular frequency $\Omega^{\text{rev}}[5]$,

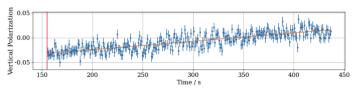
$$\varepsilon^{\mathsf{EDM}} = \frac{\Omega^{p_{\mathsf{y}}}}{\Omega^{\mathsf{rev}}} \,,$$

How is the EDM effect actually measured?

Two features are simultaneously applied in the ring:


- 1. RF Wien filter rotated by a small angle \rightarrow generates small radial magnetic RF field \rightarrow affects the spin evolution.
- 2. In addition, there is longitudinal magnetic field in ring opposite to Wien filter, about which spins rotate as well.

Measurement of EDM resonance strength using pilot bunch


RF Wien filter mapping

Observation of $p_y(t)$ with two stored bunches: **Signal and pilot bunch (PB)**

Signal bunch

Pilot bunch

11/35

- Decoherence clearly visible in signal bunch.
- No oscillations in pilot bunch.
- Determine oscillation frequencies $\Omega^{p_y} \to Wien$ filter map via $\varepsilon^{EDM} = \frac{\Omega^{p_y}}{\Omega^{rev}}$ CPEDM: Status of studies and collaboration

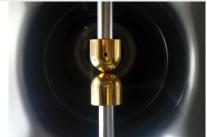
 Frank Rathmann (f.rathmann@fz-juelich.de)

Technical challenges of storage ring EDM experiments

Overview

Charged particle EDM searches require new class of high-precision machines with mainly electric fields for bending and focussing:

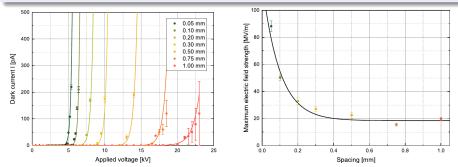
Main issues:


- Spin coherence time $\tau_{SCT} \sim 1000 \, \text{s}$ [7, 2016].
- Continuous polarimetry with relative errors < 1 ppm [29, 2012].
- Beam position monitoring with precision of 10 nm.
- Alignment of ring elements, ground motion, ring imperfections.
- Magnetic shielding.
- ullet Large electric field gradients ~ 10 to $20\, MV/m$.
- High-precision spin tracking.
- ullet d EDM with frozen spin o precise B field reversal for CW and CCW beams.

E/B Deflector development using small-scale lab setup [30]

Work by Kirill Grigoriev (IKP, RWTH Aachen and FZJ)

- Polished stainless steel
 - ≥ 240 MV/m reached at distance of 0.05 mm with half-sphere facing flat surface.
 - ▶ 17 MV/m with 1 kV at 1 mm with two small half-spheres.
- Polished aluminum
 - ▶ 30 MV/m measured at distance of 0.1 mm using two small half-spheres.
- TiN coating
 - Smaller breakdown voltage.
 - Zero dark current.

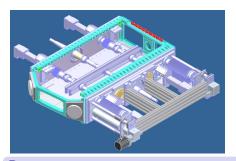


Recent results, published in [30, RSI 2019]

Dark current of stainless-steel half-sphere electrodes (10 mm radius)

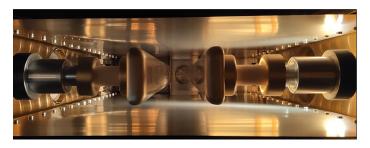
• distances $S = 1, 0.75, \dots, 0.05 \, \mathrm{mm}$, where

$$E_{\text{max}} = \frac{U}{S} \cdot F$$
, where $F = \frac{1}{4} \left[1 + \frac{S}{R} + \sqrt{\left(1 + \frac{S}{R}\right)^2 + 8} \right]$, (5)


Results promising, but tests with real size deflector elements are necessary.

E/B deflector development using real-scale lab setup

Equipment:


- Dipole magnet $B_{\text{max}} = 1.6 \,\text{T}$
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and deflector

Parameters:

- Electrode length = 1020 mm
- Electrode height = 90 mm
- Electrode spacing = 20 to 80 mm
- Max. applied voltage = $\pm 200 \, \text{kV}$
- Material: Aluminum coated by TiN

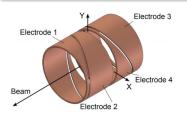
Current status of tests with real-scale setup

View along deflector plates into vacuum chamber

Continue work until end of this year

- 1. Conditioning underway (since few months)
 - $V=125\,\mathrm{kV}~(\pm 62.5\,\mathrm{kV}$ at each plate) at distance of $\Delta=91\,\mathrm{mm}$:

$$E = \frac{125 \,\text{kV}}{0.091 \,\text{m}} = 1.37 \,\text{MV/m} \tag{6}$$


- 2. Slowly raise $U \rightarrow 400 \,\mathrm{kV} \, (\pm 200 \,\mathrm{kV})$
- 3. Reduce $\Delta \rightarrow 60 \, \text{mm}$

Beam position monitors for srEDM experiments

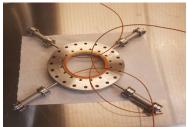
PhD work of Falastine Abusaif, improving earlier work by F. Trinkel

Development of compact BPM based on segmented Rogowski coil

ullet Main advantage is short installation length of $pprox 1\,\mathrm{cm}$ (along beam direction)

Conventional BPM

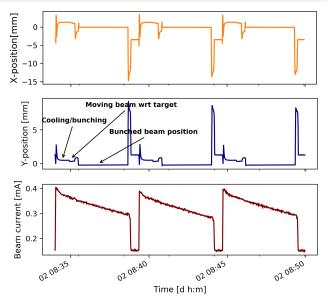
- Easy to manufacture
- length = 20 cm
- resolution $\approx 10 \, \mu m$



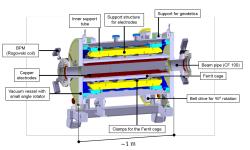
Rogowski BPM (warm)

- Excellent RF-signal response
- length $= 1 \, \text{cm}$
- resolution $\approx 1.25 \, \mu m$
- Two Rogowski coil BPMs installed at entrance and exit of RF Wien filter

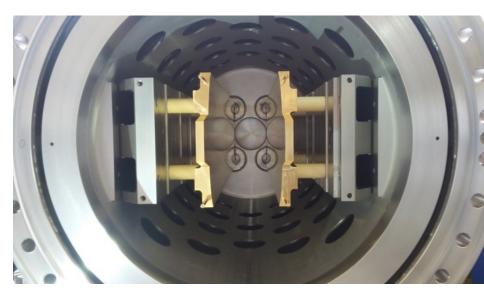
Assembly stages of one Rogowski-coil BPM



Measured beam positions at entrance of RF Wien filter


from a run in 2019

Design of waveguide RF Wien filter


Joint Jülich – RWTH Aachen development:

- Institute of High Frequency Technology, RWTH Aachen University:
- Waveguide provides $\vec{E} \times \vec{B}$ by design.
- Minimal \vec{F}_L by careful electromagnetic design of all components [6].

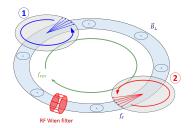
View along the beam axis in the RF Wien filter

Fast switches¹ for RF power of Wien filter

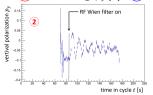
GaN HEMT-based solution (Gallium Nitride Transistors):

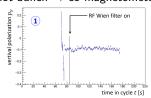
- Short switch on/off times (\approx few ns).
- High power capabilities (≈ few kV).
- On board power damping.

- symmetric switch on/off times (\approx few ns).
- \bullet $-30\,\mathrm{dB}$ power damping.


Installed switches:

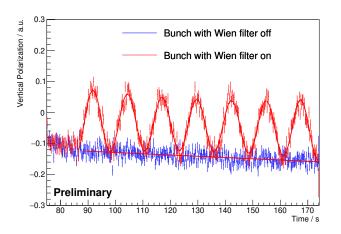
- capable to handle up to 200 W each
- permits system to run near a total power of 0.8 kW in pulsed mode


¹developed together with Fa. barthel HF-Technik GmbH, Aachen


Bunch-selective spin manipulation (co-magnetometry) I

World-first (September 2020 JEDI, with d at 970 MeV/c)

- bunches $\bigcirc{1}$ and $\bigcirc{2}$ orbit at $f_{\text{rev}} \approx 750 \, \text{kHz}$:
 - coherent ensembles in ring plane
 - precessing at $f_s \approx 120 \, \mathrm{kHz}$
- waveguide RF WF [6] with radial field \vec{B}_r
 - on resonance² at $f_{WF} = 871.430646 \, \text{kHz}$
- Apply bunch-selective gating of RF Wien filter in 1:
 - ▶ 2 oscillating $p_y(t)$, 1 not affected (pilot bunch \rightarrow co-magnetometer)

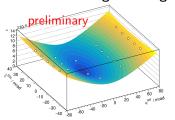


 $^{^1}f_{\mathrm{WF}} = K \cdot f_{\mathsf{rev}} + f_{\mathsf{s}} = (K + \nu_{\mathsf{s}})f_{\mathsf{rev}}$, where $K \in \mathbb{Z}$ and ν_{s} is spin tune

Bunch-selective spin manipulation (co-magnetometry) II

World-first (September 2020 JEDI, with d at 970 MeV/c)

Preliminary results: to be submitted soon by JEDI



Analysis of pilot bunch run by Jamal Slim

Results from dEDM precursor experiment

Precursor I: 3 maps with initial-slope method (IS). Precursor II: 2 maps IS + 5 maps with PB

EDM resonance strength map for $\varepsilon^{\rm EDM}$. It includes tilts of invariant spin axis due to EDM and magnetic ring imperfections.

Determination of minimum via fit with theoretical surface function yields:

$$\phi_0^{
m WF}/{
m mrad} = -2.05 \pm 0.02$$

•
$$|\xi_0^{\sf Sol}/{\sf mrad} = 4.32 \pm 0.06$$

Extraction of deuteron EDM:

- 1. Minimum determines spin rotation axis (3-vector) at RF WF, including EDM.
- 2. Spin tracking in COSY lattice \rightarrow orientation of stable spin axis w/o EDM.
- 3. EDM is obtained from the difference of 1. and 2.

EDM analysis now focuses more on systematics

- Data analysis close to final & EDM results in preparation.
- Goal: Describe observed tilts of stable spin axis by spin tracking.

Measurement of axion-like particle in storage ring

First-ever search for axion-like particles using this method

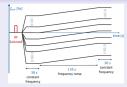
Basic idea

- Axion field $a(t) = a_0 \cos(\omega_a(t t_0) + \phi_a(t_0))$ induces an oscillating EDM [10] $d(t) = d_{DC} + d_{AC} \cos(\omega_a(t t_0) + \phi_a(t_0))$ with frequency related to the mass via $\hbar \omega_a = m_a c^2$, f_a is decay constant.
- This affects the spin rotations in the ring,

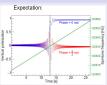
$$\frac{\mathrm{d}\mathcal{S}}{\mathrm{d}t} = \left(\vec{\Omega}_{\mathsf{MDM}} - \vec{\Omega}_{\mathsf{rev}} + \vec{\Omega}_{\mathsf{EDM}} + \vec{\Omega}_{\mathsf{wind}}\right) \times \vec{\mathcal{S}} \,,$$

because two axion-related terms enter: (EDM: [10], wind: [11])

$$\vec{\Omega}_{\text{EDM}} = -\frac{1}{S\hbar} d(t) c \vec{\beta} \times \vec{B} \,, \quad \text{and}$$


$$\vec{\Omega}_{\text{wind}} = -\frac{1}{S\hbar} \frac{C_N}{2f_a} \left(\hbar \partial_0 a(t)\right) \vec{\beta} \quad \begin{cases} \text{coupling constant } C_N \\ \text{time derivative } \partial_0 \end{cases}$$
(7)

 \Rightarrow Resonant build-up of vertical polarization, when $\omega_a = \omega_s$


Details about axion/ALP experiment

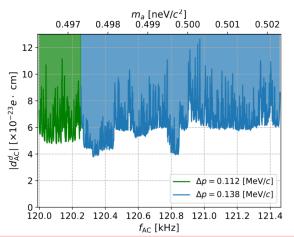
(see [12] for details)

Momentum ramps (f_{rev}) in COSY searching for polarization changes

Organization of frequency ramps

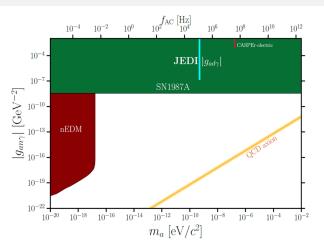
Jump of vertical polarization jump when resonance is crossed, for $\omega_{\rm a}=\omega_{\rm s}.$

Cover different oscillating EDM phases using multiple bunches



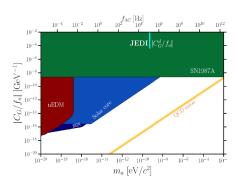
 ϕ_a not known \rightarrow use perpendicular beam polarization with 4 bunches

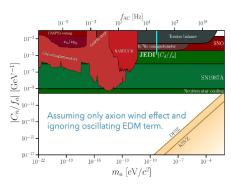
LR asymmetry for one cycle and four bunches simultaneously orbiting.


Bound on oscillating EDM of deuteron [12]

Observed oscillation amplitudes from 4 bunches

- 90% CL upper limit on the ALPs induced oscillating EDM
- Average of individual measured points $d_{AC} < 6.4 \times 10^{-23} \, \mathrm{e\,cm}$


Bound on ALP-EDM coupling


Coupling of ALP to deuteron EDM

- Obtained limit of $g_{ad\gamma} < 1.7 \times 10^{-7} \, \text{GeV}^2$ during few days of data taking.
- For further details and various ALP couplings, see [12].

ALP-gluon and ALP-nucleon coupling³

ALP-gluon coupling, assuming 100% oscillating EDM.

ALP-nucleon coupling, only axion wind effect, ignoring oscillating EDM term.

³Figures courtesy of C. O'Hare, "cajohare/axionlimits: Axionlimits," (2020), https://doi.org/10.5281/zenodo.3932430

Strategy toward dedicated EDM ring

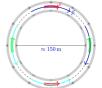
Project stages and time frame [2, CYR '21]

Stage 1

Precursor experiment

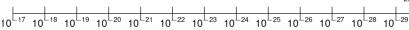
- magnetic ring
- proof-of-capability
- 1st dFDM & 1st axion measurement using ring
- orbit/polarization control

Stage 2


Prototype ring

- Key technologies
- electric/magnetic bends
- simultaneous (*) and (*)
- first pEDM measurement
- 5 years

Stage 3


Dedicated storage ring

- magic $E_m = 232.79 \,\text{MeV}$
- sensitivity goal 10⁻²⁹ e cm
- 10 years

now

 $\sigma_{EDM}/(e \cdot cm)$

Next step: Stage 2: Prototype EDM storage ring (PTR)

Build demonstrator for charged-particle EDM

- Project prepared by **FDM** collaboration (CERN + JEDI + srEDM).
- Physics Beyond Collider process (CERN) & ESPP Update.

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- p at 45 MeV frozen spin including additional vertical magnetic fields

Challenges – open issues

- All electric & E/B combined bends
- Storage time
- CW-CCW operation with orbit difference to pm

- Spin-coherence time
- Polarimetry
- Magnetic moment effects
- Stochastic cooling

Primary purpose of PTR

Study open issues and perform first direct proton EDM measurement.

Summary I

Search for charged hadron particle EDMs (p, d, light ions) in rings:

- New window to disentangle sources of CP violation, and to possibly explain matter-antimatter asymmetry of the Universe.
- Search for static charged particle EDMs $(p, d, {}^{3}\text{He})$
 - EDMs \rightarrow probes of CP-violating interactions \rightarrow Matter-antimatter asymmetry
- Search for oscillating EDMs:
 - Axion coupling to gluons and nucleons
 - Dark matter search
- Potential sensitivity to gravitational effects [2, 13].
- New class of (primarily) electrostatic rings is needed.
- ullet Dedicated (final) ring with anticipated sensitivity of $\leq 10^{-29}\,\mathrm{e\,cm}.$

Summary II

Recent results

- Results & achievements of collaboration summarized in CYR [2].
- Determination of limit of coupling of ALPs to deuteron EDM at COSY [12]:

$$g_{ad\gamma} < 1.7 imes 10^{-7} \, \mathrm{GeV}^2$$

- Frequency range: 119 997 Hz to 121 457 Hz, total width \approx 1500 Hz.
- ALP mass range: 0.496 neV to 0.502 neV.
- Potential to enlarge scanned frequency range at expense of lower sensitivity.
- High sensitivity for *dedicated* frequency (mass) scans.
- Technique can also exploit sidebands $\omega_a = \omega_s + k \cdot \omega_{\text{rev}}, \ k \in \mathbb{Z}$.
- Deuteron EDM measurements at COSY:
 - Good data from both Precursor I (3 maps with IS method) and Precursor II (2 maps IS + 5 maps with pilot bunch).
 - Data analysis close to final & EDM results in preparation.
 - Focus on systematic studies \rightarrow understand observed tilts of stable spin axis.

Summary III

Next step: Prototype ring development

- Intermediate step between precursor experiment (stage 1) and dedicated EDM storage ring (stage 3)
- Goal: Study open issues & perform first direct pEDM measurement
- Design study call in INFRADEV-01-01-2022 still pending.
 - Final decision by EU expected soon.
 - Partners: INFN, CERN, Aachen, GSI, MPI-HD, Liverpool, Krakow, Tbilisi
- For dedicated EDM storage ring, possible host sites presently conceived are CERN or COSY.

Thank you for your attention!

References I

- J. Bsaisou, J. de Vries, C. Hanhart, S. Liebig, U.-G. Meißner, D. Minossi, A. Nogga, and A. Wirzba, "Nuclear electric dipole moments in chiral effective field theory," Journal of High Energy Physics 2015, 1 (2015), ISSN 1029-8479, URL http://dx.doi.org/10.1007/JHEP03(2015)104.
- [2] F. Abusaif et al. (CPEDM), Storage Ring to Search for Electric Dipole Moments of Charged Particles Feasibility Study (CERN, Geneva, 2021), 1912.07881.
- [3] S. P. Chang, S. Haciomeroglu, O. Kim, S. Lee, S. Park, and Y. K. Semertzidis, "Axion dark matter search using the storage ring EDM method," PoS PSTP2017, 036 (2018), 1710.05271.
- [4] T. Fukuyama and A. J. Silenko, "Derivation of Generalized Thomas-Bargmann-Michel-Telegdi Equation for a Particle with Electric Dipole Moment," Int. J. Mod. Phys. A28, 1350147 (2013), URL https://www.worldscientific.com/doi/abs/10.1142/S0217751X13501479.
- [5] F. Rathmann, N. N. Nikolaev, and J. Slim, "Spin dynamics investigations for the electric dipole moment experiment," Phys. Rev. Accel. Beams 23, 024601 (2020), URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.024601.
- [6] J. Slim, R. Gebel, D. Heberling, F. Hinder, D. Hölscher, A. Lehrach, B. Lorentz, S. Mey, A. Nass, F. Rathmann, et al., "Electromagnetic simulation and design of a novel waveguide rf wien filter for electric dipole moment measurements of protons and deuterons," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 116 (2016), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/S0168900216303710.

References II

- [7] G. Guidoboni, E. Stephenson, S. Andrianov, W. Augustyniak, Z. Bagdasarian, M. Bai, M. Baylac, W. Bernreuther, S. Bertelli, M. Berz, et al. (JEDI), "How to reach a thousand-second in-plane polarization lifetime with 0.97 gev/c deuterons in a storage ring," Phys. Rev. Lett. 117, 054801 (2016), URL http://link.aps.org/doi/10.1103/PhysRevLett.117.054801.
- [8] D. Eversmann, V. Hejny, F. Hinder, A. Kacharava, J. Pretz, F. Rathmann, M. Rosenthal, F. Trinkel, S. Andrianov, W. Augustyniak, et al. (JEDI), "New method for a continuous determination of the spin tune in storage rings and implications for precision experiments," Phys. Rev. Lett. 115, 094801 (2015), URL https://link.aps.org/doi/10.1103/PhysRevLett.115.094801.
- [9] N. Hempelmann, V. Hejny, J. Pretz, E. Stephenson, W. Augustyniak, Z. Bagdasarian, M. Bai, L. Barion, M. Berz, S. Chekmenev, et al. (JEDI), "Phase locking the spin precession in a storage ring," Phys. Rev. Lett. 119, 014801 (2017), URL https://link.aps.org/doi/10.1103/PhysRevLett.119.014801.
- [29] N. Brantjes, V. Dzordzhadze, R. Gebel, F. Gonnella, F. Gray, D. van der Hoek, A. Imig, W. Kruithof, D. Lazarus, A. Lehrach, et al., "Correcting systematic errors in high-sensitivity deuteron polarization measurements," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 664, 49 (2012), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/S016890021101850X.

References III

- [30] K. Grigoryev, F. Rathmann, A. Stahl, and H. Ströher, "Electrostatic deflector studies using small-scale prototype electrodes," Review of Scientific Instruments 90, 045124 (2019), https://doi.org/10.1063/1.5086862, URL https://doi.org/10.1063/1.5086862.
- [10] P. W. Graham and S. Rajendran, "Axion dark matter detection with cold molecules," Phys. Rev. D 84, 055013 (2011), URL https://link.aps.org/doi/10.1103/PhysRevD.84.055013.
- [11] P. W. Graham and S. Rajendran, "New observables for direct detection of axion dark matter," Phys. Rev. D 88, 035023 (2013), URL https://link.aps.org/doi/10.1103/PhysRevD.88.035023.
- [12] S. Karanth et al. (JEDI), "First Search for Axion-Like Particles in a Storage Ring Using a Polarized Deuteron Beam," (2022), 2208.07293.
- [13] see, e.g., the presentations at the ARIES WP6 Workshop: Storage Rings and Gravitational Waves "SRGW2021", 2 February - 11 March 2021, available from https://indico.cern.ch/event/982987.
- [14] C. L. Bennett et al. (WMAP), "First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results," Astrophys. J. Suppl. 148, 1 (2003), astro-ph/0302207.
- [15] V. Barger, J. P. Kneller, H.-S. Lee, D. Marfatia, and G. Steigman, "Effective number of neutrinos and baryon asymmetry from BBN and WMAP," Phys. Lett. B566, 8 (2003), hep-ph/0305075.

References IV

- [16] W. Bernreuther, "CP violation and baryogenesis," Lect. Notes Phys. 591, 237 (2002), hep-ph/0205279.
- [17] I. B. Khriplovich and S. K. Lamoreaux, CP violation without strangeness: Electric dipole moments of particles, atoms, and molecules (Berlin, Germany: Springer (1997) 230 p, 1997).
- [18] F. Rathmann, A. Saleev, and N. N. Nikolaev, "The search for electric dipole moments of light ions in storage rings," J. Phys. Conf. Ser. 447, 012011 (2013).
- [19] J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, et al., "Order of magnitude smaller limit on the electric dipole moment of the electron," Science 343, 269 (2014), ISSN 0036-8075, http://science.sciencemag.org/content/343/6168/269.full.pdf, URL http://science.sciencemag.org/content/343/6168/269.
- [20] G. W. Bennett, B. Bousquet, H. N. Brown, G. Bunce, R. M. Carey, P. Cushman, G. T. Danby, P. T. Debevec, M. Deile, H. Deng, et al. (Muon (g-2)), "Improved limit on the muon electric dipole moment," Phys. Rev. D 80, 052008 (2009), URL https://link.aps.org/doi/10.1103/PhysRevD.80.052008.
- [21] K. Inami, K. Abe, K. Abe, R. Abe, T. Abe, I. Adachi, H. Aihara, M. Akatsu, Y. Asano, T. Aso, et al., "Search for the electric dipole moment of the τ lepton," Physics Letters B 551, 16 (2003), ISSN 0370-2693, URL http://www.sciencedirect.com/science/article/pii/S0370269302029842.

References V

- [22] L. Pondrom, R. Handler, M. Sheaff, P. T. Cox, J. Dworkin, O. E. Overseth, T. Devlin, L. Schachinger, and K. Heller, "New limit on the electric dipole moment of the Λ hyperon," Phys. Rev. D 23, 814 (1981), URL https://link.aps.org/doi/10.1103/PhysRevD.23.814.
- [23] J. M. Pendlebury, S. Afach, N. J. Ayres, C. A. Baker, G. Ban, G. Bison, K. Bodek, M. Burghoff, P. Geltenbort, K. Green, et al., "Revised experimental upper limit on the electric dipole moment of the neutron," Phys. Rev. D 92, 092003 (2015), URL https://link.aps.org/doi/10.1103/PhysRevD.92.092003.
- [24] V. F. Dmitriev and R. A. Sen'kov, "Schiff moment of the mercury nucleus and the proton dipole moment," Phys. Rev. Lett. 91, 212303 (2003), URL http://link.aps.org/doi/10.1103/PhysRevLett.91.212303.
- [25] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, "Reduced limit on the permanent electric dipole moment of ¹⁹⁹hg," Phys. Rev. Lett. 116, 161601 (2016), URL http://link.aps.org/doi/10.1103/PhysRevLett.116.161601.
- [26] M. A. Rosenberry and T. E. Chupp, "Atomic electric dipole moment measurement using spin exchange pumped masers of ¹²⁹Xe and ³He," Phys. Rev. Lett. 86, 22 (2001).
- [27] D. Albers et al., "A Precision measurement of pp elastic scattering cross-sections at intermediate energies," Eur. Phys. J. A22, 125 (2004).

References VI

- [28] I. Vasserman, P. Vorobyov, E. Gluskin, P. Ivanov, I. Koop, G. Kezerashvili, A. Lysenko, I. Nesterenko, E. Perevedentsev, A. Mikhailichenko, et al., "Comparison of the electron and positron anomalous magnetic moments: Experiment 1987," Physics Letters B 198, 302 (1987), ISSN 0370-2693, URL http://www.sciencedirect.com/science/article/pii/0370269387915152.
- [31] J. Slim, N. N. Nikolaev, F. Rathmann, A. Wirzba, A. Nass, V. Hejny, J. Pretz, H. Soltner, F. Abusaif, A. Aggarwal, et al. (JEDI), "First detection of collective oscillations of a stored deuteron beam with an amplitude close to the quantum limit," Phys. Rev. Accel. Beams 24, 124601 (2021), URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.124601.
- [32] J. Slim, N. N. Nikolaev, F. Rathmann, and A. Wirzba, "Quantum mechanics of radiofrequency-driven coherent beam oscillations in storage rings," (2021), 2111.08444.
- [33] A. Saleev, N. N. Nikolaev, F. Rathmann, W. Augustyniak, Z. Bagdasarian, M. Bai, L. Barion, M. Berz, S. Chekmenev, G. Ciullo, et al. (JEDI), "Spin tune mapping as a novel tool to probe the spin dynamics in storage rings," Phys. Rev. Accel. Beams 20, 072801 (2017), URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.072801.
- [34] Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, "Resonance method of electric-dipole-moment measurements in storage rings," Phys. Rev. Lett. 96, 214802 (2006), URL http://link.aps.org/doi/10.1103/PhysRevLett.96.214802.

References VII

- [36] J. Slim, A. Nass, F. Rathmann, H. Soltner, G. Tagliente, and D. Heberling, "The driving circuit of the waveguide RF Wien filter for the deuteron EDM precursor experiment at COSY," JINST 15, P03021 (2020), URL https://iopscience.iop.org/article/10.1088/1748-0221/15/03/P03021/pdf.
- [37] C. Weidemann, F. Rathmann, H. J. Stein, B. Lorentz, Z. Bagdasarian, L. Barion, S. Barsov, U. Bechstedt, S. Bertelli, D. Chiladze, et al., "Toward polarized antiprotons: Machine development for spin-filtering experiments," Phys. Rev. ST Accel. Beams 18, 020101 (2015), URL http://link.aps.org/doi/10.1103/PhysRevSTAB.18.020101.
- [38] I. Keshelashvili, F. Müller, D. Mchedlishvili, and D. Shergelashvili (JEDI), "A new approach: LYSO based polarimetry for the EDM measurements," J. Phys. Conf. Ser. 1162, 012029 (2019).
- [39] D. Shergelashvili, D. Mchedlishvili, F. Müller, and I. Keshelashvili (Jedi), "Development of LYSO detector modules for a charge-particle EDM polarimeter," PoS SPIN2018, 145 (2019).
- [40] F. Müller et al., "A New Beam Polarimeter at COSY to Search for Electric Dipole Moments of Charged Particles," JINST 15, P12005 (2020), 2010.13536.

References VIII

- [41] M. Ieiri, H. Sakaguchi, M. Nakamura, H. Sakamoto, H. Ogawa, M. Yosol, T. Ichihara, N. Isshiki, Y. Takeuchi, H. Togawa, et al., "A multifoil carbon polarimeter for protons between 20 and 84 mev," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 257, 253 (1987), ISSN 0168-9002. URL
 - https://www.sciencedirect.com/science/article/pii/0168900287907443.
- [42] F. Abusaif et al., "Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study," (2019), https://e-publishing.cern.ch/index.php/CYRM/issue/view/132.
- [43] F. Abusaif (JEDI), "Development of compact highly sensitive beam position monitors for storage rings," Hyperfine Interactions 240, 4 (2019), URL https://link.springer.com/article/10.1007/s10751-018-1543-x.
- J. Slim, F. Rathmann, A. Nass, H. Soltner, R. Gebel, J. Pretz, and D. Heberling, [44] "Polynomial chaos expansion method as a tool to evaluate and quantify field homogeneities of a novel waveguide {RF} wien filter," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 859, 52 (2017), ISSN 0168-9002, URL
 - http://www.sciencedirect.com/science/article/pii/S0168900217303807.

References IX

[45] J. Slim, R. Gebel, D. Heberling, F. Hinder, D. Hölscher, A. Lehrach, B. Lorentz, S. Mey, A. Nass, F. Rathmann, et al., "Electromagnetic simulation and design of a novel waveguide rf wien filter for electric dipole moment measurements of protons and deuterons," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 116 (2016), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/S0168900216303710.

Spare slides

Baryon asymmetry in the Universe

Carina Nebula: Largest-seen star-birth regions in the galaxy

Observation and expectation from Standard Cosmological Model (SCM):

	$\eta = (n_b - n_{\bar{b}})/n_{\gamma}$	
Observation	$\left(6.11^{+0.3}_{-0.2} ight) imes10^{-10}$	Best Fit Cosmological Model [14]
	$(5.53-6.76)\times10^{-10}$	WMAP [15]
Expectation from SCM	$\sim 10^{-18}$	Bernreuther (2002) [16]

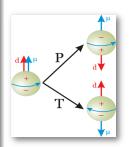
• SCM gets it wrong by more than 8 orders of magnitude.

Electric dipole moments (EDMs)

For particles with EDM \vec{d} and MDM $\vec{\mu}$ ($\propto \vec{s}$),

non-relativistic Hamiltonian:

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$


• **Energy of magnetic dipole** invariant under *P* and *T*:

$$-\vec{\mu} \cdot \vec{B} \xrightarrow{P \text{ or } T} -\vec{\mu} \cdot \vec{B}$$

No other direction than spin \Rightarrow \vec{d} parallel to $\vec{\mu}$ (\vec{s}).

• Energy of electric dipole $H = -\vec{d} \cdot \vec{E}$, includes term

$$\vec{s} \cdot \vec{E} \longrightarrow -\vec{s} \cdot \vec{E},$$
 (8)

Thus, EDMs violate both P and T symmetry

- EDMs possibly constitute the missing cornerstone to explain surplus of matter over antimatter in the Universe.
 - Non-vanishing EDMs would add 4th quantum number to fundamental particles (besides m, q, and s).

Motivation

Large worldwide effort to search for EDMs of fundamental particles:

- hadrons, leptons, solids, atoms and molecules.
- $\bullet \sim 500$ researchers (estimate by Harris, Kirch).

Why search for charged particle EDMs using a storage ring?

- 1. Up to now, no direct measurement of charged hadron EDM available:
- Charged hadron EDM experiments provide potentially higher sensitivity than for neutrons:
 - longer lifetime,
 - more stored polarized protons/deuterons available than neutrons, and
 - one can apply larger electric fields in storage ring.
- 3. Approach complimentary to neutron EDM searches.

Theorists keep repeating that

EDM of single particle not sufficient to identify CP violating source [1]

Naive estimate of scale of nucleon EDM

From Khriplovich & Lamoreux [17] and Nikolaev [18]:

ullet CP and P conserving magnetic moment pprox nuclear magneton μ_N .

$$\mu_N = \frac{e}{2m_p} \sim 10^{-14} \, \mathrm{e\,cm}.$$

- A non-zero EDM requires:
 - P violation: price to pay is $\approx 10^{-7}$, and
 - *CP* violation (from *K* decays): price to pay is $\sim 10^{-3}$.
- In summary:

$$|d_{N}| \sim 10^{-7} imes 10^{-3} imes \mu_{N} \sim 10^{-24} \, ext{e cm}$$

• In Standard model (without θ_{QCD} term):

$$| extit{d}_{ extit{N}}| \sim 10^{-7} imes 10^{-24} \, ext{e cm} \sim 10^{-31} \, ext{e cm}$$

Region to search for Beyond Standard Model (BSM) physics

• from nucleon EDMs with $\theta_{QCD}=0$:

$$10^{-24}\,\mathrm{e\,cm} > |d_N| > 10^{-31}\,\mathrm{e\,cm}$$

Status of EDM searches I

EDM limits in units of [e cm]:

- \bullet Long-term goals for neutron, $^{199}_{80}{\rm Hg},~^{129}_{54}{\rm Xe},$ proton, and deuteron.
- Neutron equivalent values indicate value for neutron EDM d_n to provide same physics reach as indicated system:

Particle	Current limit	Goal	d _n equivalent	date [ref]
Electron	$< 8.7 \times 10^{-29}$	$pprox 10^{-29}$		2014 [19]
Muon	$< 1.8 imes 10^{-19}$			2009 [20]
Tau	$< 1 imes 10^{-17}$			2003 [21]
Lambda	$< 3 \times 10^{-17}$			1981 [22]
Neutron	$(-0.21\pm1.82)\times10^{-26}$	$pprox 10^{-28}$	10^{-28}	2015 [23]
$^{199}_{80}{ m Hg}$	$< 7.4 imes 10^{-30}$	10^{-30}	$< 1.6 imes 10^{-26} [24]$	2016 [25]
$^{129}_{54}{ m Xe}$	$< 6.0 imes 10^{-27}$	$pprox 10^{-30}$ to 10^{-33}	$pprox 10^{-26}$ to 10^{-29}	2001 [26]
Proton	$<2\times10^{-25}$	$pprox 10^{-29}$	10 ⁻²⁹	2016 [25]
Deuteron	not available yet	$pprox 10^{-29}$	$pprox 3 imes 10^{-29} \ \text{to} \ 5 imes 10^{-31}$	

Search for charged particle EDMs with frozen spins

Magic storage rings

For any sign of G, in *combined* electric and magnetic machine:

Generalized solution for magic momentum

$$\frac{E_x}{B_y} = \frac{Gc\beta\gamma^2}{1 - G\beta^2\gamma^2},\tag{9}$$

P E

where E_x is radial, and B_v vertical field.

• Some configurations for circular machine with fixed radius $r = 25 \,\mathrm{m}$:

particle	G	$p[{ m MeV}{ m c}^{-1}]$	T [MeV]	$E_{\scriptscriptstyle X}[{ m MVm^{-1}}]$	$B_{y}[T]$
proton	1.793	700.740	232.792	16.772	0.000
deuteron	-0.143	1000.000	249.928	-4.032	0.162
helion	-4.184	1200.000	245.633	14.654	-0.044

Offers possibility to determine EDMs of

protons, deuterons, and helions in one and the same machine.

Experimental requirements for storage ring EDM searches

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity, and shielding from perturbing magnetic fields.
- High beam intensity: $N = 4 \times 10^{10}$ particles per fill.
- High polarization of stored polarized hadrons: P = 0.8.
- Large electric fields: $E = 10 \,\text{MV/m}$.
- Long spin coherence time: $\tau_{SCT} = 1000 \, s$.
- Efficient polarimetry with
 - ► large analyzing power: $A_v \simeq 0.6$,
 - ▶ and high efficiency detection $f \simeq 0.005$.

In terms of numbers given above:

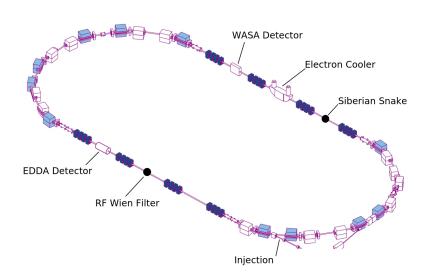
• This implies:
$$\sigma_{\text{stat}} = \frac{1}{\sqrt{Nf} \tau_{\text{SCT}} P A_{\text{v}} E} \quad \Rightarrow \quad \boxed{\sigma_{\text{stat}}(1 \, \text{yr}) = 10^{-29} \, \text{e cm}}. \tag{10}$$

• Experimentalist's goal is to provide σ_{syst} to the same level.

Progress toward storage ring EDM experiments

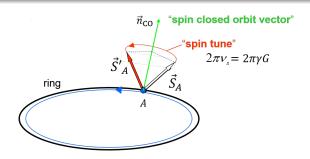
Complementing the spin physics tool box

COoler SYnchrotron COSY

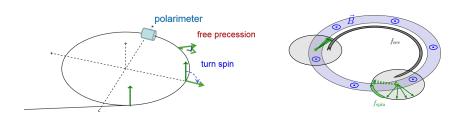

- Cooler and storage ring for (polarized) protons and deuterons.
- Momenta $p = 0.3 3.7 \,\text{GeV/c}$.
- Phase-space cooled internal and extracted beams.

Until 2010, COSY used for spin-physics with hadrons:

- Provides an ideal starting point for srEDM related R&D.
- Will be used for a first direct measurment of deuteron EDM.


COSY Landscape

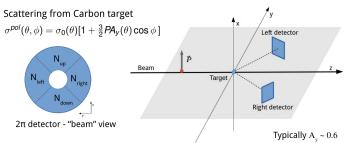
Spin closed orbit and spin tune


One particle with magnetic moment makes one turn in machine (A - A):

- Stable direction of polarization in ring, if \vec{S} // \vec{n}_{co} .
- Vector \vec{n}_{co} around which spins precess called spin-closed orbit:
 - stable direction $\vec{n}_{co} = \vec{n}_{co}(s)$ (in general a function of position in the ring).

Number of spin precessions per turn is called spin tune ν_s .

Principle of spin-coherence time measurement



Measurement procedure:

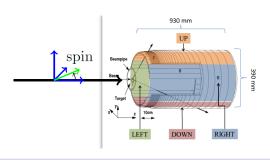
- 1. Vertically polarized deuterons stored at $p \simeq 1 \, \text{GeV} \, \text{c}^{-1}$.
- 2. Polarization flipped into horizontal plane with RF solenoid (\approx 200 ms).
- 3. Beam extracted on Carbon target with ramped bump or by heating.
- 4. Horizontal (in-plane) polarization determined from U-D asymmetry.

Detector system for polarimetry

POLARIZATION MEASUREMENT

Right/Left asymmetry \propto vertical component of polarization P_y

Up/Down asymmetry \propto horizontal component of polarization P_{x}


$$\epsilon_{UD} = \frac{N_U - N_D}{N_U + N_D} = P_x A_y \qquad \text{Needed to maintain "frozen spin" condition}$$

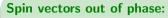
Maria Żurek - EDMs with JEDI

Page 13

Detector system: EDDA [27]

EDDA used to determine $\vec{p}\vec{p}$ elastic polarization observables:

- Deuterons at $p=1\,{\rm GeV}\,{\rm c}^{-1}$, $\gamma=1.13$, and $\nu_{\rm s}=\gamma G\simeq -0.161$
- Spin-dependent differential cross section on unpolarized target:


$$N_{\rm U,D} \propto 1 \pm \frac{3}{2} p_{\rm x} A_{\rm y} \sin(\underbrace{\nu_{\rm s} \cdot f_{\rm rev}}_{f_{\rm s}=-120.7\,{\rm kHz}} \cdot t), \text{ where } f_{\rm rev} = 750.0\,{\rm kHz}.$$
 (11)

Spin coherence time

Most polarization experiments unaffected by coherence of spins along \vec{n}_{co}

Spins aligned:

Ensemble coherent

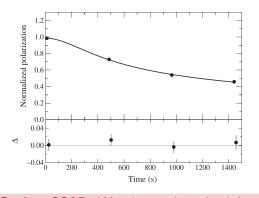
Ensemble decoherent

 \Rightarrow Polarization along \vec{n}_{co} not affected

With frozen spins: $\vec{S} \perp \vec{n}_{co}$:

Spins aligned

Spins out of phase in horizontal plane


⇒ In-plane polarization vanishes

In machines with frozen spins:

Buildup time t to observe polarization $p_{\nu}(t)$ is limited by τ_{SCT} .

Optimization of spin-coherence time [7]

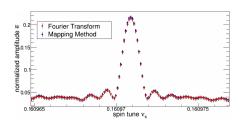
Precise adjustments of three sextupole families in the ring

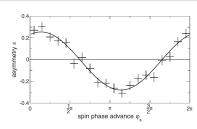
JEDI progress on τ_{SCT} :

$$au_{\mathsf{SCT}} = (\mathbf{782} \pm \mathbf{117})\,\mathsf{s}$$

• Previous record: $\tau_{\text{SCT}}(\text{VEPP}) \approx 0.5 \, \text{s} \, \text{[28]}$ ($\approx 10^7 \, \text{spin revolutions}$).

Spring 2015: Way beyond anybody's expectation:

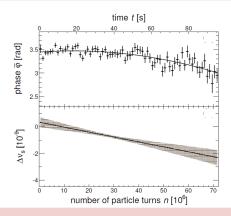

- With about 10⁹ stored deuterons.
- Long spin coherence time was one of main obstacles of srEDM experiments.
- Large value of τ_{SCT} of crucial importance (10), since $\sigma_{\text{stat}} \propto \tau_{\text{SCT}}^{-1}$.


Precision determination of spin tune [8] I

Time-stamping events in each detector quadrant accurately:

- 1. Based on turn number n, 100 s measurement interval split into turn intervals of $\Delta n = 10^6$ turns, each interval lasting ≈ 1.3 s.
- 2. For all events, spin phase advance $\varphi_s=2\pi|\nu_s^{\rm fix}|n$ calculated assuming certain fixed spin tune $\nu_s^{\rm fix}$.
- 3. Either map events into one full polarization oscillation in range $\varphi_s \in [0, 2\pi)$, or perform Fourier analysis of rates in detector \Rightarrow determine $\tilde{\varepsilon}$ and $\tilde{\phi}$ in

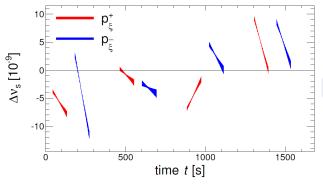
$$\varepsilon(\varphi_s) = \tilde{\varepsilon}\sin(\varphi_s + \tilde{\varphi}). \tag{12}$$


Precision determination of the spin tune [8] II

Precise time-stamping of events,

• allows us to monitor phase of measured asymmetry with (assumed) fixed spin tune ν_s in a 100 s cycle:

$$\nu_{s}(n) = \nu_{s}^{\text{fix}} + \frac{1}{2\pi} \frac{d\tilde{\phi}}{dn}$$


$$= \nu_{s}^{\text{fix}} + \Delta \nu_{s}(n)$$
(13)

Experimental technique allows for:

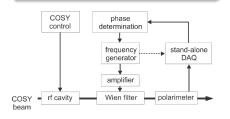
- Spin tune ν_s determined to $\approx 10^{-8}$ in 2s time interval.
- In a 100 s cycle at $t \approx 38$ s, interpolated spin tune amounts to $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11}$, i.e., $\Delta \nu_s / \nu_s \approx 10^{-10}$.
- \Rightarrow new precision tool to study systematic effects in a storage ring.

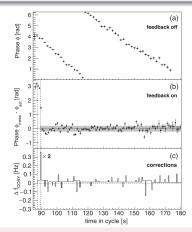
Precision determination of the spin tune [8] III

Walk of spin tune ν_s [8].

Applications of new technique:

- Study long term stability of an accelerator.
- Feedback system to stabilize phase of spin precession relative to phase of RF devices (→ phase-lock).
- Studies of machine imperfections.


Phase locking spin precession in machine to device RF


At COSY, one cannot freeze the spin precession

 \Rightarrow To achieve precision for EDM, phase-locking is next best thing to do.

Feedback system maintains

- 1. resonance frequency, and
- 2. phase between spin precession and device RF (solenoid or WF)

Major achievement : Error of phase-lock $\sigma_{\phi}=$ 0.21 rad [9].

First direct deuteron EDM measurement using COSY Precursor experiment

Highest EDM sensitivity shall be achieved with a new type of machine:

- An electrostatic circular storage ring, where
 - centripetal force produced primarily by electric fields.
 - ▶ E field couples to EDM and provides required sensitivity ($< 10^{-28}$ e cm).
 - ▶ In this environment, magnetic fields mean evil (since μ is large).

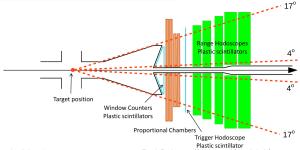
Idea of proof-of-principle experiment with RF Wien filter ($\vec{E} \times \vec{B}$):

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis (\simeq direction of magnetic fields in dipole magnets).
- Use RF device operating on some harmonic of the spin-precession frequency:
 - ⇒ Phase lock between spin precession and device RF.
 - \Rightarrow Allows one to accumulate EDM effect as function of time in cycle (\sim 1000 s).

Goal of proof-of-principle experiment:

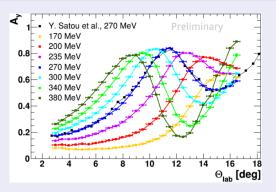
Show that conventional storage ring useable for first direct EDM measurement

dC polarimetry data base I


Data analysis mainly by Maria Zurek and PhD Fabian Müller

Motivation: Optimize polarimetry for ongoing JEDI experiments:

- Determine vector and tensor analyzing powers A_y , A_{yy} , and differential cross sections $d\sigma/d\Omega$ of dC elastic scattering at
 - ▶ deuteron kinetic energies $T = 170 380 \,\text{MeV}$.


Detector system: former WASA forward detector, modified

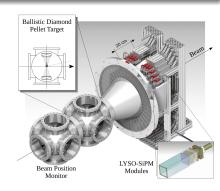
- Targets: C and CH2
- Full azimuthal coverage, scattering angle range $\theta = 4^{\circ} 17^{\circ}$.

dC polarimetry data base II

Preliminary results of elastic dC analyzing powers

- Analysis of differential dC cross sections in progress.
- Similar data base measurements carried out to provide pC data base.

High-precision beam polarimeter with internal C target


Development led by Irakli Keshelashvili

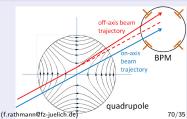
Based on LYSO Scintillation Material

- Saint-Gobain Ceramics & Plastics: Lu_{1.8}Y_{.2}SiO₅:Ce
- Compared to NaI, LYSO provides
 - high density $(7.1 \text{ vs } 3.67 \text{ g/cm}^3)$,
 - very fast decay time (45 vs 250 ns).

After several runs with external beam:

- System installed at COSY in 2019.
- Not yet ready: Ballistic diamond pellet target for homogeneous beam sampling.

Beam-based alignment for EDM measurement at COSY


PhD work of Tim Wagner

Surveys and alignment campaigns of accelerator ensure magnets aligned properly

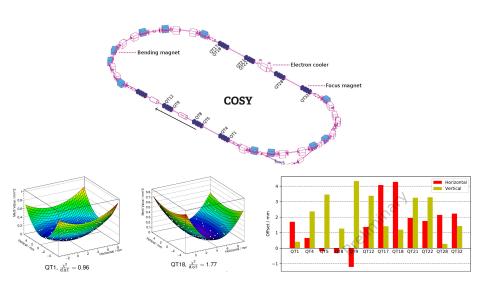
- Surveys makes use of markers mounted on magnets as reference points.
- When COSY was built, nobody thought of precision experiments
 - → no markers on Beam position monitors (BPMs), exact positions are unknown.
- EDM measurements require as good an orbit as possible
 - small RMS deviation to ideal orbit
- Goal: develop and implement method to determine exact positions of BPMs:
 - → Beam-based alignment

Machine orbit is defined by potential minimum in quadrupole magnets

- Beam is deflected when it passes through a misaligned quad.
- Beam-based alignment minimizes steering effect of quadrupoles

Orbit change when quadrupole strength is varied

$$\Delta x(s) = \frac{\Delta k \cdot x(s_0)I}{B\rho} \cdot \frac{1}{1 - k \frac{I\beta(s_0)}{2B\rho \tan \pi\nu}} \cdot \frac{\sqrt{\beta(s)\beta(s_0)}}{2\sin \pi\nu} \cos \left[\phi(s) - \phi(s_0) - \pi\nu\right]$$
(14)


- s, s_0 positions along orbit, β betatron functions, ν working point, ϕ betatron phase advance, B magnetic field, I magnet current, ρ bending radius.
- Not all parameters in (14) known well \rightarrow not possible to determine $x(s_0)$.
- Instead, use merit function

$$f = \frac{1}{N_{\text{BPM}}} \sum_{i=1}^{N_{\text{BPM}}} \left[x_i (+\Delta k) - x_i (-\Delta k) \right]^2 \propto \mathbf{x(s_0)}^2$$
 (15)

from which optimum $(f \rightarrow 0)$ is found by minimzation.

Beam-based aligment III

PhD work of Tim Wagner

Beam-based aligment IV

Preliminary results for a subset of quadrupoles

Obtained offsets of the beam-position monitors:

BPM	<i>s</i> [m]	hor. corr. [mm]	vert. corr. [mm]
BPM02	10.4	1.705 ± 0.008	0.416 ± 0.005
BPM06	29.5	$\boldsymbol{1.371 \pm 0.007}$	3.382 ± 0.011
BPM18	100.2	$\textbf{4.177} \pm \textbf{0.007}$	$\boldsymbol{1.308 \pm 0.005}$
BPM19	110.1	$\boldsymbol{1.868 \pm 0.005}$	$\boldsymbol{3.273 \pm 0.010}$
BPM20	123.3	2.149 ± 0.007	$\boldsymbol{0.281 \pm 0.007}$
BPM21	133.2	2.232 ± 0.008	$\boldsymbol{1.430 \pm 0.006}$

Remarkable precision of better than 10 µm reached

- ightarrow orbit improvement: $RMS_y=1.21\,\mathrm{mm}
 ightarrow 1.01\,\mathrm{mm}$ with only 20% of BPMs.
- Extended data set (run in Sept. '19) now covers all quadrupoles and BPMs.

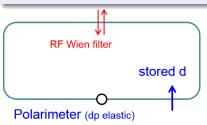
Proof of principle experiment using COSY ("Precursor experiment")

Highest sensitivity achieved with a new type of machine:

- An electrostatic circular storage ring, where
 - centripetal force produced primarily by electric fields.
 - ▶ E field couples to EDM and provide required sensitivity ($< 10^{-28}$ e cm).
 - In this environment, magnetic fields mean evil (since μ is large).

Idea for proof-of-principle experiment with novel RF Wien filter $(\vec{E} \times \vec{B})$:

- In magnetic machine, particle spins (deuterons, protons) precess about vertical (*B* field) direction.
- Use RF device operating on some harmonic of the spin-precession frequency:
 - ⇒ Phase lock between spin precession and device RF.
 - \Rightarrow Allows one to accumulate EDM effect as fct of time (cycle time $\sim 1000\,\mathrm{s}$).

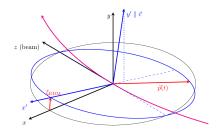

Goal of proof-of-principle experiment:

Show that storage ring (COSY) can be used for a first direct EDM measurement.

RF Wien filter method

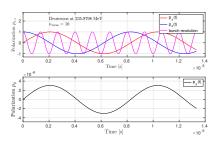
More aspects about the technique:

- RF Wien filter $(\vec{E} \times \vec{B})$ avoids coherent betatron oscillations in the beam:
 - Lorentz force $\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0$ [31, 32]
 - EDM measurement mode: $\vec{B} = (0, B_y, 0)$ and $\vec{E} = (E_x, 0, 0)$.


- Deuteron spins lie in machine plane.
- For $d \neq 0 \Rightarrow$ accumulate EDM signal during spin coherence time

Statistical sensitivity:

- in the range 10^{-23} to 10^{-24} e cm for d(deuteron) possible.
- Systematic effects: Alignment of magnetic elements, magnet imperfections, imperfections of RF-Wien filter etc.

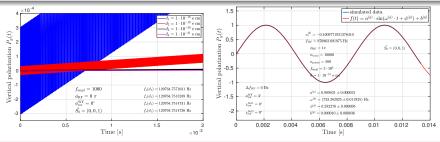

Effect of EDM on stable spin axis of the ring [5]

Without accumulation (RF WF off)

Beam particles move along z direction

- Presence of an EDM $\Rightarrow \xi_{\text{EDM}} > 0$.
- \Rightarrow Spins precess around the \vec{c} axis.
- \Rightarrow Oscillating vertical polarization component $p_v(t)$ is generated.

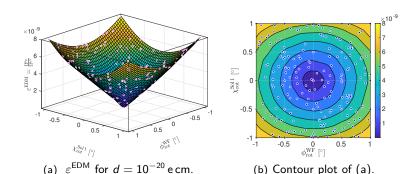
Evolution for 10 turns $[\vec{p}_0 = (0,0,1)]$


- $p_x(t)$, $p_z(t)$ and $p_y(t)$.
- Bunch revolution indicated as well.
- p_y oscillation amplitude corresponds to tilt angle ξ_{EDM} .

Model calculation of polarization buildup due to EDM [5]

With RF Wien filter

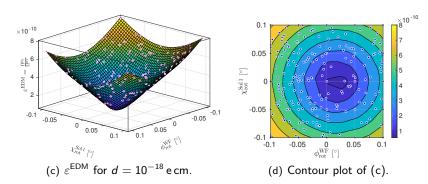
Ideal COSY ring with deuterons at $p_d = 970 \,\text{MeV/c}$:


- ullet $G=-0.143,\ \gamma=1.126,\ ar{f_s=f_{
 m rev}(\gamma G+K_{(=0)})}pprox 120.765\,{
 m kHz}$
- Enhanced RF field integral $f_{ampl} \times \int E_{WF} \cdot d\ell \approx 2200 \, kV$ (w/o ferrites) [6].

Features of EDM induced vertical polarization buildup

- EDM accumulates in vertical polarization $p_y(t) \propto d$ [33, 18, 34].
- \bullet Full oscillation of $p_{y}(t)$ with proper feedback via pilot bunch.

Expectation: $d = 10^{-20} \,\mathrm{e}\,\mathrm{cm}$ in ideal COSY ring [5]


Function describing the surface

• Surface described by elliptic paraboloid [5]:

$$\left(\varepsilon^{\rm EDM}\right)^2 = \frac{\psi_{\rm WF}^2}{16\pi^2} \cdot \left[A \left(\phi^{\rm WF} - \phi_0^{\rm WF}\right)^2 + B \left(\frac{\chi^{\rm Sol}}{2\sin\pi\nu_s^{(2)}} + \chi_0^{\rm Sol}\right)^2 + C \right] \,. \label{eq:edm_sol}$$

• A and B account for possible deviations of $\varepsilon^{\mathsf{EDM}}$ along ϕ^{WF} and χ^{Sol} .

Expectation: $d = 10^{-18} \,\mathrm{e}\,\mathrm{cm}$ in ideal COSY ring [5]

Function describing the surface

• Surface described by elliptic paraboloid [5]:

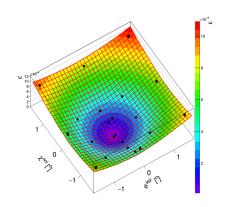
$$\left(\varepsilon^{\rm EDM}\right)^2 = \frac{\psi_{\rm WF}^2}{16\pi^2} \cdot \left[A \left(\phi^{\rm WF} - \phi_0^{\rm WF}\right)^2 + B \left(\frac{\chi^{\rm Sol}}{2\sin\pi\nu_s^{(2)}} + \chi_0^{\rm Sol}\right)^2 + C \right] \,. \label{eq:edm_sol}$$

• A and B account for possible deviations of $\varepsilon^{\mathsf{EDM}}$ along ϕ^{WF} and χ^{Sol} .

Preliminary results of Wien filter mapping I

Nov.-Dec. 2018 run

Function describing the surface


• Surface described by elliptic paraboloid [5, PRAB '20]:

$$\left(\varepsilon^{\rm EDM}\right)^2 = \frac{\psi_{\rm WF}^2}{16\pi^2} \cdot \left[A \left(\phi^{\rm WF} - \phi_0^{\rm WF}\right)^2 + B \left(\frac{\chi^{\rm Sol\,1}}{2\sin\pi\nu_s^{(2)}} + \chi_0^{\rm Sol\,1}\right)^2 + C \right] \,. \tag{16}$$

• A and B account for possible deviations of ε^{EDM} along ϕ^{WF} and $\chi^{\text{Sol 1}}$.

Preliminary results of Wien filter mapping II

Nov.-Dec. 2018 run

First data

- ullet 9 + 9 + 14 data points on 3 maps
- \bullet took \approx 2 weeks pure measuring time
- Preliminary results of fit using Eq. (16):

$$\phi_0^{\rm WF} = -3.9 \pm 0.05 \, {\rm mrad}$$
 $\chi_0^{\rm Sol\,1} = -6.8 \pm 0.04 \, {\rm mrad}$
 $A = 0.559 \pm 0.005$
 $B = 0.583 \pm 0.005$

 $C = (-1.2 \pm 0.1) \cdot 10^{-10}$

Where are we today?

- 1. Minimum determines spin rotation axis (3-vector) at RF WF including EDM.
- 2. Spin tracking shall determine orientation of stable spin axis w/o EDM.
- 3. EDM is obtained from the difference of 1, and 2.

Search for charged particle EDMs with frozen spins

Magic storage rings

For any sign of G, in *combined* electric and magnetic machine:

Generalized solution for magic momentum

$$\frac{E_{x}}{B_{y}} = \frac{Gc\beta\gamma^{2}}{1 - G\beta^{2}\gamma^{2}},\tag{18}$$

v E

where E_x is radial, and B_y vertical field.

• Some configurations for circular machine with fixed radius $r=25\,\mathrm{m}$:

particle	G	$p[{ m MeV}{ m c}^{-1}]$	T [MeV]	$E_{\scriptscriptstyle X}[{ m MVm^{-1}}]$	$B_y[T]$
proton	1.793	700.740	232.792	16.772	0.000
deuteron	-0.143	1000.000	249.928	-4.032	0.162
helion	-4.184	1200.000	245.633	14.654	-0.044

Offers possibility to determine EDMs of

protons, deuterons, and helions in one and the same machine.

Spin coherence time

Most polarization experiments don't care about coherence of spins along \vec{n}_{co}

Spins aligned:

Ensemble coherent

Ensemble decoherent

 \Rightarrow Polarization along \vec{n}_{co} not affected

With frozen spins: $\vec{S} \perp \vec{n}_{co}$:

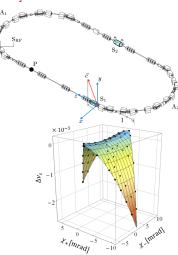
Spins aligned

Spins out of phase in horizontal plane

⇒ Longitudinal polarization vanishes

In machines with frozen spins:

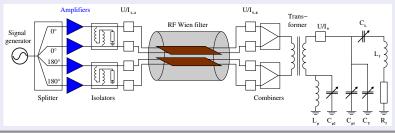
Buildup time t to observe polarization $P_y(t)$ limited by τ_{SCT} .


Study of machine imperfections

JEDI developed new method to investigate magnetic machine imperfections based on highly accurate determination of spin-tune [33, PRAB '17].

Spin tune mapping

- Two cooler solenoids act as spin rotators ⇒ generate artificial imperfection fields.
- Measure spin tune shift vs spin kicks.


- Position of saddle point determines tilt of stable spin axis by magnetic imperfections.
- Control of background from MDM at level $\Delta c = 2.8 \times 10^{-6} \, \mathrm{rad}$.
- Systematics-limited sensitivity for deuteron EDM at COSY $\sigma_d \approx 10^{-20}\,\mathrm{e\,cm}.$

Driving circuit [36]

Realization with load resistor and tunable elements (L's and C's):

• Design layout using four separate 1 kW power amplifiers.

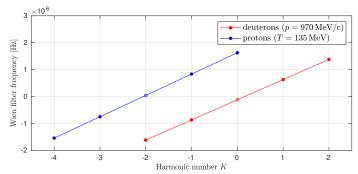
Circuit fully operational

- Tuneable elements^a allow [6]:
 - minimization of Lorentz-force, and
 - ightharpoonup velocity matching to β of the beam.
- Power upgrade to $4 \times 2 \, \text{kW}$: $\int B_z dz = 0.218 \, \text{T} \, \text{mm}$ possible.

abuilt by Fa. Barthel, http://www.barthel-hf.de.

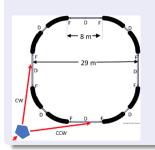
RF Wien filter

Installation at COSY


• RF Wien filter between PAX magnets. Upstream Rogowski coil; racks with power amplifiers, each unit delivers up to 500 W; water-cooled $25\,\Omega$ resistor.

Frequencies of RF Wien filter [5]

Spin resonance condition:


$$f_{\mathsf{WF}} = f_{\mathsf{rev}} \left(\gamma \mathsf{G} \pm \mathsf{K} \right) \, , \mathsf{k} \in \mathbb{Z}.$$

- RF Wien filter operates at frequencies between 0 to 2 MHz,
- Open symbols not reachable with present setup of driving circuit, i.e.,
 - deuterons at K = 0 (-120.8 kHz), and
 - ▶ protons at K = -2 (39.4 kHz).

PTR lattice design (protons)

Basic beam parameters and layout [2, chap. 7]

	E only	E & B		unit
- D !: !!	0.06	frozen spin		
Bending radius	8.86	8.86		m
Kinetic energy	30	30	45	MeV
$\beta = v/c$	0.247	0.247	0.299	
γ (kinetic)	1.032	1.032	1.048	
Momentum	239	239	294	MeV/c
Electric field E	6.67	4.56	7.00	MV/m
Magnetic field B		0.0285	0.0327	Ť
$rms\; \epsilon_{\scriptscriptstyle X} = \epsilon_{\scriptscriptstyle Y}$	1	1		π mm mrad
Transv. acc. $a_x = a_y$	> 10	> 10		π mm mrad

- p at 30 MeV all-electric CW-CCW beams operation
- p at 30 to 45 MeV frozen spin, with additional vertical B field

Status PRESTO Design Study application for PTR

Pathfinder facility for a new class of PREcision-physics STOrage rings

Framework

Call: INFRADEV-01-01-2022 - Concept Development

- Application deadline: 20.04.22

- Duration: 4 years

- Project development: 2023-2026

- Budget: total 3 M€;

Coordinator + 7 beneficiaries

- INFN (Coord.) (Italy)

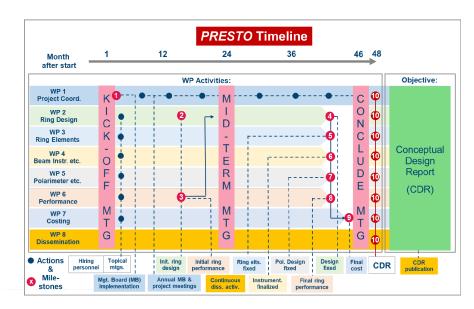
- CERN; RWTH-Aachen (Germany)

- GSI (Germany)

- MPI-HD (Germany)

- Univ. Liverpool (United Kingdom)

- Univ. Krakow (Poland)

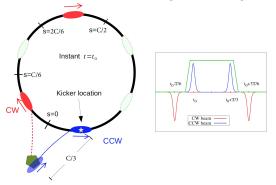

- Univ. Tbilisi (Georgia)

PRESTO status:

- presently on top of reserve list, but no final decision yet.

 Program Committee will meet before end of year. Members ask EU for transparent criteria to assign residual budget.

Timeline and Milestones of the project

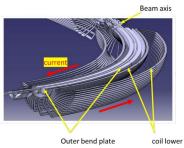


Alternative, if PRESTO not funded by '22 INFRADEV call

- Submit PRESTO project case as an ERC-AdG in early 2023:
- Objective: Feasibility study for electrostatic storage ring for precision physics
- Three participants/beneficiaries:
 - INFN: coordination and direct responsibility for the low-energy polarimeter
 - CERN: lattice design and systematic studies
 - RWTH/GSI: electrostatic deflector and beam diagnostics
- Focus on validation of the machine concepts by simulations for various ring designs (→ access to supercomputing facilities).

Beam transfer and injection system

S. Martin, R. Talman, C. Carli, M. Haj Tahar: [2, chap. 7.8]

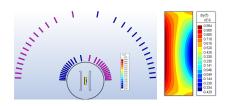

Test at COSY: spin manipulation after injection appears feasible:

- could simplify injection scheme, no need for fast switches
- orient spin directions in bunches after injection of DC beam

Electrostatic deflector

with additional magnetic bend

• Concept for electrostatic deflector element available [2, chap. 7.6].

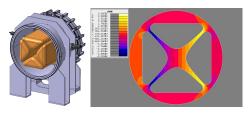


	1	units
Electric		
electric field	7.00	MV/m
gap between plates	60	mm
plate height (straight part)	151.5	mm
plate length	6.959	m
total bending length	55.673	m
total straight length	44.800	m
bend angle per unit	45	deg

- Next step: build prototype with RWTH-Aachen (IAEW High Voltage)
- Studies of straight E/B deflector element to improve voltage holding capability ongoing at Jülich.

Magnetic bends

- Concept for magnetic add-on to deflector available [2, chap. 7.6].
- Magnetic system $(\cos \theta)$ placed outside the vacuum tube.


Magnetic		
magnetic field	0.0327	Т
current density	5.000	A/mm ²
windings/element	60	,

 Magnet system included in prototype development with RWTH-Aachen (IAEW High Voltage)

Multipole elements

Quadrupoles

- Design of electrostatic elements by J. Borburgh (CERN) [2, chap. 9])
- Electrostatic quadrupoles
 - aperture diameter 80 mm, applied ±20 kV.
 - Simulated design with vacuum chamber of 400 mm diameter.

- PTR quadrupoles max. pole tip potential 30 kV (margin for conditioning)
- 3D design available:
 - sextupole, octupole and higher harmonics reasonable
 - ▶ 800 mm longitudinal length and radial diameter of 620 mm.

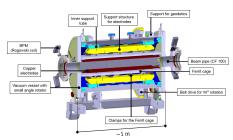
Needs strong support

Vacuum system

- Ring vacuum given by minimum required beam lifetime of about 1000 s.
 - N₂ partial pressures below 10⁻¹² mbar
 - ▶ H_2 partial pressures below 5×10^{-11} mbar.
- Stochastic cooling rate better than 5×10^{-3} mm mrad/s.
- non-vibrational system that avoids generation of magnetic fields
 - Cryogenic or NEG pumping systems may be used:
 - 1. NEG material becomes saturated after several pump-downs.
 - 2. Aging NEG material leaves dust particles in vacuum vessel.
 - 3. PTR will have significant number of pump-downs during program.
 - 4. High-voltage system requires excellent vacuum.
 - 5. System based on NEG cartouches [37] under discussion.
- Mechanical alignment of elements inside vacuum pipe of 400 mm diameter
 - active compensation of oscillations/ground motion
- Shielding (passive versus active)

Stochastic cooling

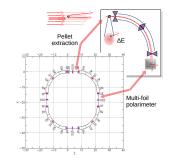
- Control proton beam emittance during measurements: 30 MeV to 45 MeV.
- Cooling should compensate emittance growth of 5×10^{-3} mm mrad/s.
 - Used successfully at COSY to compensate emittance growth of beam during interaction with internal gas targets.
 - Interplay between stochastic cooling and evolution of horizontally polarized ensemble of particles unknown.
 - Studies of emittance growth and spin coherence time not possible at any other ring prior to PTR.
- Aim: provide basic design of stochastic cooling system for PTR.


RF Cavity

- Azimuthal magnetic fields of RF cavities lead to spin rotations of the magnetic moment.
- Even in case of a perfectly aligned cavity, individual particles experience horizontal magnetic fields and spin rotations into vertical and horizontal directions.
- Effect on EDM measurement strongly suppressed:
 - cancellation of effect for different particles crossing cavity gap each turn with different betatron phases and transverse positions.
- Design of RF cavity required that minimizes unwanted spin rotations.

Spin manipulation tools

- Vertical polarisation of stored beam rotated into horizontal plane by longitudinal field of RF solenoid.
 - ightharpoonup Typical ramp-up times from vertical to horizontal polarisation are $pprox 200\,\mathrm{ms}$.
 - optimize design for PTR.



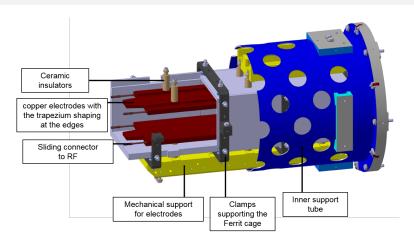
- RF Wien filter [6] applies transverse magnetic fields to spin, while excerting minimal Lorentz force on beam:
 - ► COSY: spin manipulation of individual bunches by fast RF switches feasible.
 - optimize design for PTR, need two of them for CW-CCW operations.

High-precision beam polarimeter (... with pellet extraction)

- dC (pC) scattering using white noise extraction works for relative polarization errors $\Delta p/p = 10^{-6}$ [29].
- Polarimeter system for dedicated ring described in [38-40].
- Polarization profile determination at low energies:
 - Carbon multifoil polarimeter [41] based on Silicon detectors with pellet extraction
 - ★ (PhD J. Gooding, University of Liverpool).
 - ▶ Ballistic Si pellet target for homogeneous beam sampling [42, App. K].
 - ► Eloss of 100 keV in 50 μ m pellet \rightarrow track displaced by 2.5 cm behind 90° bend.

Beam diagnostics

Beam Position Monitors

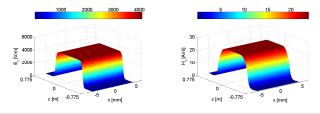

Development of prototype BPM based on segmented toroidal coil [43]

Rogowski coil

- advantages over conventional split-cylinder BPMs
 - ightharpoonup short insertion length ightarrow many BPMs can be installed
 - inexpensive
 - high sensitivity to position of bunched beams
- Other diagnostics needed:
 - ▶ Beam profile monitor, non-destructive for emittance measurement
 - ▶ BCT, also to adjust CW/CCW beam currents

Internal structure

Aim was to build the best possible device, with respect to

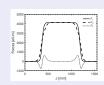

- Electromagnetic performance [6] and mechanical tolerances [44].
- Excellent cooperation with RWTH Aachen University and ZEA-Jülich.

Electromagnetic field simulations (incl. ferrites) [45]

Full-wave simulations

using CST Microwave Studio^a.

^aComputer Simulation Technology AG, Darmstadt, Germany, http://www.cst.com


At an input power of 1 kW, magnetic and electric field integrals are ($\ell=1.550\,\mathrm{m}$):

$$\int_{-\ell/2}^{\ell/2} \vec{B} dz = \begin{pmatrix} 2.73 \times 10^{-9} \\ \mathbf{2.72} \times \mathbf{10^{-2}} \\ 6.96 \times 10^{-7} \end{pmatrix} \text{ T mm} \,, \quad \int_{-\ell/2}^{\ell/2} \vec{E} dz = \begin{pmatrix} \mathbf{3324.577} \\ 0.018 \\ 0.006 \end{pmatrix} \text{ V}$$

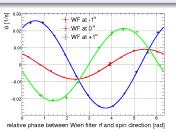
Lorentz force compensation [6]

Integral Lorentz force is of order of $-3 \, \text{eV/m}$:

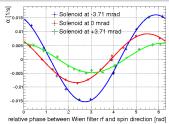
- Electric force F_e, magnetic force F_m, and Lorentz force F_L inside RF
 Wien filter.
- Trapezoid-shaped electrodes determine crossing of electric and magnetic forces.

Lorentz force

$$\vec{F}_{L} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) , \qquad (20)$$


- particle charge q, velocity vector $\vec{v} = c(0,0,\beta)$, fields $\vec{E} = (E_x, E_y, E_z)$ and $\vec{B} = \mu_0(H_x, H_y, H_z)$, μ_0 vacuum permeability.
- For vanishing Lorentz force $\vec{F}_L = 0$, field quotient Z_q given by

$$E_x = -c \cdot \beta \cdot \mu_0 \cdot H_y \quad \Rightarrow \quad \boxed{Z_q = -\frac{E_x}{H_y} = c \cdot \beta \cdot \mu_0 \approx 173 \ \Omega}.$$
 (21)


First measurement of EDM-like buildup signals

Rate of out-of-plane rotation angle $\dot{\alpha}(t)|_{t=0}$ as function of Wien filter RF phase ϕ_{RF}

- B field of RF Wien filter normal to the ring plane.
- Wien filter operated at $f_{WF} = 871 \, \text{kHz}$.
- Variations of $\phi_{\rm rot}^{\rm WF}$ and $\chi_{\rm rot}^{\rm Sol \, 1}$ affect the pattern of observed initial slopes $\dot{\alpha}$.

$$\dot{\alpha}$$
 for $\phi^{\mathrm{WF}}_{\mathrm{rot}}=-1^{\circ}$, 0° , $+1^{\circ}$ and $\chi^{\mathrm{Sol}\,1}_{\mathrm{rot}}=0$.

$$\dot{lpha}$$
 for $\chi^{\mathsf{Sol}\,\mathtt{1}}_{\mathsf{rot}} = -\mathtt{1}$, 0, $+\mathtt{1}^{\circ}$ and $\phi^{\mathsf{WF}}_{\mathsf{rot}} = \mathtt{0}$.

Planned measurements:

- 1st EDM measurement run Nov-Dec/2018 (6 wk, ongoing).
- 2nd run planned for Fall/Winter 2019 (6 wk).

 CPEDM: Status of studies and collaboration

 Flank Rathmann (f.rathmann@fz-juelich.de)