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Ion Energy Analysis - Using Ch. 1 of Atomic Collisions by Earl W. McDaniel to derive the fractional energy loss of the

primary electron during ionization of a gas molecule

Here we model the electron-ion collision in ionization as a hard collision between smooth elastic spheres. That is, we
imagine two spheres that only interact at the instant of contact and no energy goes into rotation. Figure below diagrams the
collision and denotes the coordinate system and all relevant angles and vectors.

Figure 1: Diagram of Electron-Ion Collision

The primary electron is modeled as a sphere of mass m with initial velocity ~v0 in the −z direction. The primary electron
elastically scatters o� a target molecule of mass M , which is initially at rest, at an incident angle θ. After the collision, the
primary electron scatters with velocity ~v at an angle ϑ. Without loss of generality, the collision occurs only in the yz-plane
(there is no constraint a priori which plane the collision takes place)

Since there are no external forces on the system, momentum is conserved and we can write down the momentum conser-
vation equations

~Ptot,i = ~Ptot,f

~pm,i + ~pM,i = ~pm,f + ~pM,f

〈0, 0,−mv0〉+ 〈0, 0, 0〉 = 〈0,−mv sinϑ,mv cosϑ〉+ 〈0,MV sin θ,MV cos θ〉
mv sinϑ = MV sin θ (1)

−mv0 = mv cosϑ+MV cos θ (2)

Since the collision is elastic, kinetic energy is conserved:

Km,i +KM,i = Km,f +KM,f

mv20
2

=
mv2

2
+
MV 2

2
→ mv20 = mv2 +MV 2 (3)
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We can solve equations 1 and 2 and get an expression for v2 in terms of m, M , v0, V , and θ by squaring equations (1)
and (2) and adding them together:

m2v2 sin2 ϑ = M2V 2 sin2 θ

m2v2 cos2 ϑ = (mv0 +MV cos θ)
2

m2v2 = m2v20 + 2mMv0V cos θ +M2V 2

v2 = v20 +
2M

m
v0V cos θ +

M2

m2
V 2 (4)

From eq. (3),

v2 =
mv20 −MV 2

m
(5)

Equating (4) and (5) yields:

v20 +
2M

m
v0V cos θ +

M2

m2
V 2 =

mv20 −MV 2

m

mv20 + 2Mv0V cos θ +
M2

m
V 2 = mv20 −MV 2

2Mv0V cos θ +
M2

m
V 2 = −MV 2

2v0 cos θ +
MV

m
= −V

2v0 cos θ = −V
(

1 +
M

m

)
2mv0 cos θ = −V (m−M)

V = −2mv0 cos θ

m+M
(6)

McDaniel gives V as

V =
2mv0 cos θ

m+M
(7)

i.e. without the minus sign, though I'm too lazy to �gure out who's right.
Let p (θ) dθ be the probability that the incident angle occurs between [θ, θ + dθ]. The total e�ective area presented for m

colliding with M is πD2 where D is the distance between the centers of m and M . Consider the cone de�ned by the angles
within [θ, θ + dθ]. The area of this surface element is 2πD sin θDdθ, though the collision can only take place for a fraction of
incident angles along Z; in this case it is cos θ. Thus p (θ) dθ is

p (θ) dθ =


2πD2 sin θ cos θdθ

πD2
= sin 2θdθ θ ∈

[
0,
π

2

]
0 θ ∈

(π
2
, π
] (8)

The fractional loss of energy of m, ∆ (θ), is given by

∆ (θ) =
Km,i −Km,f

Km,i
=
v20 − v2

v20
(9)

(Note that v0 > v, so absolute value signs in the numerator are not not necessary). Plugging in eq. (5) yields:

∆ (θ) =
v20 −

(
v20 − M

m V
2
)

v20
=
MV 2

mv20
=
KM,f

Km,i
(10)

as we'd expect from eq. (3). The mean fractional loss of energy over all incident angles is given by

∆ (θ) =

r π/2
0

p (θ) ∆ (θ) dθ
r π/2
0

p (θ) dθ
(11)

2



I'll evaluate the numerator and denominator separately. For the numerator:

π/2w

0

p (θ) ∆ (θ) dθ =

π/2w

0

sin 2θdθ
MV 2

mv20

Using eq. (7) for V , this becomes

π/2w

0

p (θ) ∆ (θ) dθ =

(
M

mv20

)(
2mv0
m+M

)2 π/2w

0

sin 2θ cos2 θdθ

=
4Mm

(m+M)
2

(
1

2

)
=

2Mm

(m+M)
2

For the denominator,
π/2w

0

p (θ) dθ =

π/2w

0

sin 2θdθ = 1

Thus,

∆ = ∆ (θ) =
2Mm

(m+M)
2 (12)

In the case of electron-ion collision, m � M , ∆ ≈ 2m

M
and V ≈ 2m

M
v0 cos θ. Now, θ and ϑ are related by θ ≈ π

2
− ϑ

2
.

Plugging these into eq. (10) yields

∆ (ϑ) =
MV 2

mv20
=

M

mv20

4m2v20
M2

cos2
(
π

2
− ϑ

2

)
=

4m

M

(
1

2
(1− cosϑ)

)
∆ (ϑ) =

2m

M
(1− cosϑ) (13)

where we used the identity cos2
(π

2
− x
)

= sin2 x =
1

2
(1− cos 2x). As ϑ → 0, ∆ (ϑ) → 0, corresponding to the case of a

grazing collision with little to no energy loss. On the other hand, a head-on collision corresponds to ϑ = π in which the

electron back-scatters with ∆ (π) =
4m

M
. As M increases, ∆ decreases, meaning that the electron loses little to no energy

regardless of the incident angle. In the case of Hydrogen gas,
m

M
≈ 0.03%. If an electron with kinetic energy of 130keV

backscatters o� a hydrogen gas molecule, then the ion receives ∼ 156eV of kinetic energy
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