Difference between revisions of "To-do list"
Jump to navigation
Jump to search
(9 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | '''To-do list (Things that are broken at UITF, or could be improved upon...)''' | + | '''To-do list (Things that are broken at UITF, or could be improved upon...)''' Updated 11/21 |
General: | General: | ||
Line 8: | Line 8: | ||
#Procure more UHV supplies (another set of them) | #Procure more UHV supplies (another set of them) | ||
#Boards that convert electrical to fiber and vice versa | #Boards that convert electrical to fiber and vice versa | ||
− | #Work table upstairs | + | #Work table upstairs on mezzanine |
#Label all elements with label maker in cave. | #Label all elements with label maker in cave. | ||
#Create Generic Experimental Templates for submission | #Create Generic Experimental Templates for submission | ||
Line 18: | Line 18: | ||
#*Power outage response checklist | #*Power outage response checklist | ||
#Add Video camera inside cave - preferably through viewer system for flexibility. Additional I/O required? Closed-circuit/ controllable like in Hall A/C? | #Add Video camera inside cave - preferably through viewer system for flexibility. Additional I/O required? Closed-circuit/ controllable like in Hall A/C? | ||
− | |||
− | |||
#UOD Updates: Correct the staffing requirement/ ok for control room unmanned laser master mode in Beam Sync [Max thoughts: Given that setting the beam mode to Beam Sync, being a software setting, is not inherently machine-safe, perhaps modify PSS to have extra physical key or button that inhibits laser? (Have that be part of staffing restrictions) It seems we want to avoid requiring to take down the gun HV, not just the cave resweep.] | #UOD Updates: Correct the staffing requirement/ ok for control room unmanned laser master mode in Beam Sync [Max thoughts: Given that setting the beam mode to Beam Sync, being a software setting, is not inherently machine-safe, perhaps modify PSS to have extra physical key or button that inhibits laser? (Have that be part of staffing restrictions) It seems we want to avoid requiring to take down the gun HV, not just the cave resweep.] | ||
#Any/all changes need to be documented, UED updated, and HCO/alarm handler updated from there. | #Any/all changes need to be documented, UED updated, and HCO/alarm handler updated from there. | ||
#PSS recertification due by June 2022. | #PSS recertification due by June 2022. | ||
+ | #Move some cabinets into UITF from outside. | ||
Vacuum:<br> | Vacuum:<br> | ||
− | 600-line: | + | *600-line: |
− | #Re-attach IYGM604 viewer to paddle | + | *#Re-attach IYGM604 viewer to paddle |
− | #Fix the short in the ion pump beneath the viewer (Screw fell into pump?) | + | *#Fix the short in the ion pump beneath the viewer (Screw fell into pump?) |
− | 700 line: Drop VIPM701 vertically on spool to limit stray field. | + | *700 line: Drop VIPM701 vertically on spool to limit stray field. |
− | 800-line: Add old M6 dump to elevated beamline? | + | *800-line: Add old M6 dump to elevated beamline? |
+ | *Replace capped roughing valves with new right angle valves when we vent keV region | ||
+ | *Examine where to put valves for better segmentation. Maybe 1 in 500 line. Some in keV region. Manual valves are fine - preferred even. | ||
+ | *More parts cleaning and inventory. | ||
− | <u>Diagnostics:</u> | + | <u>Diagnostics:</u><br> |
BPMS: | BPMS: | ||
#BPMs don’t report the same orbit in tune mode and CW & BPMs report beam when there is no beam: Too much 1497 MHz rf inside the enclosure? Can the stripline BPMs look for a harmonic of 1497 MHz? Were strip lines / DR receivers right choice vs older SEE antenna-style bpms? (Musson studying behavior; RF shielding put into place upstairs) | #BPMs don’t report the same orbit in tune mode and CW & BPMs report beam when there is no beam: Too much 1497 MHz rf inside the enclosure? Can the stripline BPMs look for a harmonic of 1497 MHz? Were strip lines / DR receivers right choice vs older SEE antenna-style bpms? (Musson studying behavior; RF shielding put into place upstairs) | ||
Line 42: | Line 44: | ||
#Replace IPMM802 receiver. | #Replace IPMM802 receiver. | ||
− | BCM: | + | BCM:<br> |
#Save/restore feature for register settings | #Save/restore feature for register settings | ||
#PSS critical device design / implementation | #PSS critical device design / implementation | ||
#Need a beam loss accounting system; MPS BCM cavity or PSS BCM but this is a much bigger project (can’t we just buy a system that Trent designed/built for SLAC, or duplicate it?) | #Need a beam loss accounting system; MPS BCM cavity or PSS BCM but this is a much bigger project (can’t we just buy a system that Trent designed/built for SLAC, or duplicate it?) | ||
− | Viewers/Insertables: | + | Viewers/Insertables:<br> |
#Viewers were not always installed at useful Z locations, i.e., betatron phase advance. What is a useful location? At a beam waist. “Viewers at nodes, BPMs at anti-nodes” (Need Model or Beta functions, which means model work need to happen first to validate...) | #Viewers were not always installed at useful Z locations, i.e., betatron phase advance. What is a useful location? At a beam waist. “Viewers at nodes, BPMs at anti-nodes” (Need Model or Beta functions, which means model work need to happen first to validate...) | ||
#Cameras that can be line-synced, then we could use them to look for 60 Hz motion. | #Cameras that can be line-synced, then we could use them to look for 60 Hz motion. | ||
Line 59: | Line 61: | ||
# Diagnostics girder in front of booster set up poorly. Can we move FC#2 downstream of diagnostic cross (or move cross upstream) so we can use cup for keV emittance measurements and matching. Add wire scanner to cross and make viewer a YAG. [Mike] | # Diagnostics girder in front of booster set up poorly. Can we move FC#2 downstream of diagnostic cross (or move cross upstream) so we can use cup for keV emittance measurements and matching. Add wire scanner to cross and make viewer a YAG. [Mike] | ||
− | Harps: | + | Harps:<br> |
# Move ITVM504 to cross with a harp; replace flag with a YAG. Get rid of iron parts (needs venting) per Phil. Updated version to replace it with with less ferromagnetic parts further from the beam line. | # Move ITVM504 to cross with a harp; replace flag with a YAG. Get rid of iron parts (needs venting) per Phil. Updated version to replace it with with less ferromagnetic parts further from the beam line. | ||
#IHAM703 X/Y swapped (Fix with rotation angle in UED) | #IHAM703 X/Y swapped (Fix with rotation angle in UED) | ||
Line 70: | Line 72: | ||
#Install an insertable halfwave plate to flip the sign of the polarization | #Install an insertable halfwave plate to flip the sign of the polarization | ||
#Photogun and keV beamline: | #Photogun and keV beamline: | ||
− | + | #*Joe's rebuild plan for keV section. | |
− | + | #*At the chopper chamber, VIPK301 ion pump not energized, it is just spewing CH4 into beamline, replace it | |
− | + | #*Add load lock to depo chamber (I have cross and manipulator) | |
− | + | #*Add Mott polarimeter on keV line | |
− | + | #*A3 is in the wrong place, at least in terms of protecting the booster | |
− | + | #*Beam appears far right at ITVK203A, beam appears far left at ITVK401, maybe the alignment of the beamline will help? | |
− | + | #*Install vertical Wien | |
#BNC spigots for triggers: pockel cell and gun mode | #BNC spigots for triggers: pockel cell and gun mode | ||
+ | #Permanently incorporate prep chamber instrumentation into EPICS | ||
+ | #*stalk heater PS, temperature readback, ion pump current, anode current. Consider protection logic to disable heater if pressure or temp gets too high. Add oven timer. It should automagically post a completion notice to UITFLOG. | ||
+ | #*maybe also an EPICS-switchable DC voltage for the auxiliary laser diode (replaces manual "beam shutter")? | ||
+ | #*have a second PS for the dispenser; could be remote-controlled or not, don't really care... we can't automate the whole process anyway because of the manual valve | ||
Optics/CASA: | Optics/CASA: | ||
Line 84: | Line 90: | ||
#Institutionalize use of qsutility to set quads (In progress) | #Institutionalize use of qsutility to set quads (In progress) | ||
#Understand out-of-plane focusing from dipoles | #Understand out-of-plane focusing from dipoles | ||
+ | #Xi to save relevant field maps to wiki for posterity + GPT model/deck. | ||
+ | #Ditto elegant - opticians - SVT repository? | ||
+ | |||
RF/LLRF: | RF/LLRF: | ||
Line 93: | Line 102: | ||
#LLRF distribution map (frequencies etc.) | #LLRF distribution map (frequencies etc.) | ||
#Install Brock cavity in MeV region. | #Install Brock cavity in MeV region. | ||
+ | #Jitter assessment and correction | ||
DC Power: | DC Power: | ||
Line 101: | Line 111: | ||
#Systematic Checks of magnet polarity. | #Systematic Checks of magnet polarity. | ||
#Add hall probes on MDL dipoles | #Add hall probes on MDL dipoles | ||
+ | #Move 2 quads from elevated line to 500-region for 6-D phase space matching? [Mike] | ||
Line 109: | Line 120: | ||
SSG: | SSG: | ||
+ | #SSI screens for existing installation | ||
+ | #HMI screen install into pss cabinet | ||
#More Robust Rapid Access system? | #More Robust Rapid Access system? | ||
::*Probably need a beacon or locked door to the aisle way above UITF (where we store stuff), or at least verification from RadCon that it’s ok to access this space when running beam. Or maybe it’s safe to go back there when running beam? | ::*Probably need a beacon or locked door to the aisle way above UITF (where we store stuff), or at least verification from RadCon that it’s ok to access this space when running beam. Or maybe it’s safe to go back there when running beam? | ||
::*Need a professional rapid access beacon/system at entry way to the enclosure | ::*Need a professional rapid access beacon/system at entry way to the enclosure | ||
::*Closed circuit cameras inside the enclosure | ::*Closed circuit cameras inside the enclosure | ||
− | + | ||
ACE: | ACE: |
Latest revision as of 22:46, 21 November 2021
To-do list (Things that are broken at UITF, or could be improved upon...) Updated 11/21
General:
- Add sufficient concrete shielding to raise deliverable current; validate with RCG Breakpoint measurements. (In progress with FML)
- Update the Operational Restrictions page to reflect new RadCon shielding assessment.
- Re-do lead stack on the keV dump structure w/ 80/20 table? (Design required)
- 800-line: Shield new dump w/ RCG; work shield design w/ Shaun.
- Procure more UHV supplies (another set of them)
- Boards that convert electrical to fiber and vice versa
- Work table upstairs on mezzanine
- Label all elements with label maker in cave.
- Create Generic Experimental Templates for submission
- Continual quick reference drawing updates
- Procedure development:
- Cold Start-up
- Shut down
- Hot Standby / Daily Start-up
- Power outage response checklist
- Add Video camera inside cave - preferably through viewer system for flexibility. Additional I/O required? Closed-circuit/ controllable like in Hall A/C?
- UOD Updates: Correct the staffing requirement/ ok for control room unmanned laser master mode in Beam Sync [Max thoughts: Given that setting the beam mode to Beam Sync, being a software setting, is not inherently machine-safe, perhaps modify PSS to have extra physical key or button that inhibits laser? (Have that be part of staffing restrictions) It seems we want to avoid requiring to take down the gun HV, not just the cave resweep.]
- Any/all changes need to be documented, UED updated, and HCO/alarm handler updated from there.
- PSS recertification due by June 2022.
- Move some cabinets into UITF from outside.
Vacuum:
- 600-line:
- Re-attach IYGM604 viewer to paddle
- Fix the short in the ion pump beneath the viewer (Screw fell into pump?)
- 700 line: Drop VIPM701 vertically on spool to limit stray field.
- 800-line: Add old M6 dump to elevated beamline?
- Replace capped roughing valves with new right angle valves when we vent keV region
- Examine where to put valves for better segmentation. Maybe 1 in 500 line. Some in keV region. Manual valves are fine - preferred even.
- More parts cleaning and inventory.
Diagnostics:
BPMS:
- BPMs don’t report the same orbit in tune mode and CW & BPMs report beam when there is no beam: Too much 1497 MHz rf inside the enclosure? Can the stripline BPMs look for a harmonic of 1497 MHz? Were strip lines / DR receivers right choice vs older SEE antenna-style bpms? (Musson studying behavior; RF shielding put into place upstairs)
- Add BPM + corrector @gun, similar to 2I @ CEBAF, but subject to optimization...
- Autogain / auto-threshold script to configure
- Move receivers to vault to limit RF interference? (How rad hard are they / how to shield?)
- Replace IPMM802 receiver.
BCM:
- Save/restore feature for register settings
- PSS critical device design / implementation
- Need a beam loss accounting system; MPS BCM cavity or PSS BCM but this is a much bigger project (can’t we just buy a system that Trent designed/built for SLAC, or duplicate it?)
Viewers/Insertables:
- Viewers were not always installed at useful Z locations, i.e., betatron phase advance. What is a useful location? At a beam waist. “Viewers at nodes, BPMs at anti-nodes” (Need Model or Beta functions, which means model work need to happen first to validate...)
- Cameras that can be line-synced, then we could use them to look for 60 Hz motion.
- Survey view screens which are already YAG, but inappropriately labelled and correct. Change over remaining screens as opportunities present.
- Swap YAG flags for Chromox everywhere we can.
- Decouple viewer from FC2 upstream of booster, also add another corrector just upstream.
- Re-attach IYGM604 viewer flag to turnbuckle
- Ready for I-to-Vs
- A3 should be closer to booster in order to protect the booster and define the launch
- UED updates: ITV vs IYG survey of all viewers; what flags are presently designated chromox but are YAG?
- Diagnostics girder in front of booster set up poorly. Can we move FC#2 downstream of diagnostic cross (or move cross upstream) so we can use cup for keV emittance measurements and matching. Add wire scanner to cross and make viewer a YAG. [Mike]
Harps:
- Move ITVM504 to cross with a harp; replace flag with a YAG. Get rid of iron parts (needs venting) per Phil. Updated version to replace it with with less ferromagnetic parts further from the beam line.
- IHAM703 X/Y swapped (Fix with rotation angle in UED)
Gun/Laser (EGG):
- Laser power is very small. OK for bulk GaAs and keV Mott, but not enough for a program with superlattice photocathodes
- Move the laser under the table inside the enclosure? Eliminate the fiber... work with SSG needed to maintain all the PSS hooks.
- Laser power drift (temp cycle of the room AC?), but the current lock can deal with this, so not actually a problem when beam arrives at a cup or dump. Maybe a problem for Wastewater Treatment
- Install an insertable halfwave plate to flip the sign of the polarization
- Photogun and keV beamline:
- Joe's rebuild plan for keV section.
- At the chopper chamber, VIPK301 ion pump not energized, it is just spewing CH4 into beamline, replace it
- Add load lock to depo chamber (I have cross and manipulator)
- Add Mott polarimeter on keV line
- A3 is in the wrong place, at least in terms of protecting the booster
- Beam appears far right at ITVK203A, beam appears far left at ITVK401, maybe the alignment of the beamline will help?
- Install vertical Wien
- BNC spigots for triggers: pockel cell and gun mode
- Permanently incorporate prep chamber instrumentation into EPICS
- stalk heater PS, temperature readback, ion pump current, anode current. Consider protection logic to disable heater if pressure or temp gets too high. Add oven timer. It should automagically post a completion notice to UITFLOG.
- maybe also an EPICS-switchable DC voltage for the auxiliary laser diode (replaces manual "beam shutter")?
- have a second PS for the dispenser; could be remote-controlled or not, don't really care... we can't automate the whole process anyway because of the manual valve
Optics/CASA:
- The optics modeling program should tell us beam size and aspect ratio at each viewer, so we have something to work towards, quickly, empirically
- Electron beam optics not presently good, there is beta mismatch across the booster
- Institutionalize use of qsutility to set quads (In progress)
- Understand out-of-plane focusing from dipoles
- Xi to save relevant field maps to wiki for posterity + GPT model/deck.
- Ditto elegant - opticians - SVT repository?
RF/LLRF:
- Yao cavity damaged during one of the bake outs? Check in-situ
- Buncher heater control is primitive: local heater with feedback. There is epics temperature readback, but no epics interface to the heater control.
- Wouldn’t it be easier to use a 200 W solid state amp to drive the 2-cell? Forward power today is only 40 W, the 2-cell is not meant to be driven hard.
- Microphonics diagnostics should be available when running beam, so that when problems are encountered, we can see immediately if there’s a correlation with microphonic vibrations. At the moment, we can only assess microphonics from inside the cave, when the beam is OFF
- Do the piezo tuners do anything? Why not?
- LLRF distribution map (frequencies etc.)
- Install Brock cavity in MeV region.
- Jitter assessment and correction
DC Power:
- Consolidate the locations of steering magnets? Put them where they need to be
- Polarity of magnets not all correct, and some H/V labels are incorrect
- Add corrector in front of Booster for Max
- Steering magnet holders for big and small Haimsons.
- Systematic Checks of magnet polarity.
- Add hall probes on MDL dipoles
- Move 2 quads from elevated line to 500-region for 6-D phase space matching? [Mike]
Software:
- MAC Access for Training purposes, so global doesn't have to be opened. (Requested from Bevins)
- Some epics screens were hastily prepared, copied from CEBAF. Epics screens should be improved, streamlined
SSG:
- SSI screens for existing installation
- HMI screen install into pss cabinet
- More Robust Rapid Access system?
- Probably need a beacon or locked door to the aisle way above UITF (where we store stuff), or at least verification from RadCon that it’s ok to access this space when running beam. Or maybe it’s safe to go back there when running beam?
- Need a professional rapid access beacon/system at entry way to the enclosure
- Closed circuit cameras inside the enclosure
ACE:
- We need a map of our network connections, what is the network layout now at UITF? Do all network connections go through the rack behind the laser room/control room. Are they all owned by Accelerator Division. I think we have a combination of IT and Accel network routers
- Where are all the pc104s and how do we reset them?
- Table top printer for control room
Replace central big screen monitor in control room (Property tag F1-8291)(Done; excess bad monitor?)- MCC Style Wall monitors