Difference between revisions of "Thesis outline"
Jump to navigation
Jump to search
Line 13: | Line 13: | ||
*''Phase space'' | *''Phase space'' | ||
*''Emittance (thermal, phase space, geometric)'' | *''Emittance (thermal, phase space, geometric)'' | ||
− | *''Effective(drift) emittance (emittance of | + | *''Effective(drift) emittance (emittance of a magnetized beam)'' |
− | *''Measuring the beam emittance'' | + | *''Measuring/calculating the beam emittance'' |
==Space charge effect== | ==Space charge effect== | ||
− | *''Space charge effect in | + | *''Space charge effect in a magnetized electron beam'' |
==Simulations on the magnetized electron beam== | ==Simulations on the magnetized electron beam== | ||
Line 32: | Line 32: | ||
===''Post-processing (MATLAB)''=== | ===''Post-processing (MATLAB)''=== | ||
− | ==Characterization of the magnetized beam== | + | ==Characterization of the magnetized electron beam== |
===''Experimental method''=== | ===''Experimental method''=== | ||
**''Beam size vs solenoid I'' | **''Beam size vs solenoid I'' | ||
**''Rotation angle vs solenoid I'' | **''Rotation angle vs solenoid I'' | ||
− | **''Emittance vs solenoid I - | + | **''Emittance vs solenoid I - three different laser sizes'' |
**''Emittance vs laser spot sizes - max solenoid current'' | **''Emittance vs laser spot sizes - max solenoid current'' | ||
− | ===''ASTRA/GPT simulations ( | + | ===''ASTRA/GPT simulations (Simulations of all the above variations)''=== |
*''Conclusions (comparisons -measurements vs simulations, mismatch oscillations, negative rotation angles, etc.)'' | *''Conclusions (comparisons -measurements vs simulations, mismatch oscillations, negative rotation angles, etc.)'' | ||
− | == | + | ==Experimental and numerical simulation results of the space charge dominated magnetized electron beam== |
===''Experimental method''=== | ===''Experimental method''=== | ||
**''Pulse energy vs extracted charge-for different magnetizations'' | **''Pulse energy vs extracted charge-for different magnetizations'' | ||
Line 56: | Line 56: | ||
*''High voltage conditioning'' | *''High voltage conditioning'' | ||
− | ==Repeated experimental and numerical | + | ==Repeated experimental and numerical simulation results of the space charge dominated magnetized electron beam with the new photogun == |
==Summary and Conclusions== | ==Summary and Conclusions== |
Revision as of 10:09, 29 May 2020
Introduction
- Magnetized electron beam
- Applications of the magnetized electron beam
- Magnetized electron cooling
- Jefferson Lab magnetized electron source for the JLEIC cooler
Generation of the magnetized electron beam
- Experimental setup (DC HV gun, photocathode, cathode solenoid, RF laser, focusing solenoids, etc.)
- Beam diagnostics
Beam dynamics
- Beam matrix
- Phase space
- Emittance (thermal, phase space, geometric)
- Effective(drift) emittance (emittance of a magnetized beam)
- Measuring/calculating the beam emittance
Space charge effect
- Space charge effect in a magnetized electron beam
Simulations on the magnetized electron beam
ASTRA
- Initial particle distribution
- Field maps (3D E field map, 2D B field map)
- Space charge calculation mechanism
- Emittance
GPT
- Initial particle distribution (Laser*QE image processing)
- Field maps (3D E field map, 2D B field map)
- Space charge calculation mechanism
- Emittance
Post-processing (MATLAB)
Characterization of the magnetized electron beam
Experimental method
- Beam size vs solenoid I
- Rotation angle vs solenoid I
- Emittance vs solenoid I - three different laser sizes
- Emittance vs laser spot sizes - max solenoid current
ASTRA/GPT simulations (Simulations of all the above variations)
- Conclusions (comparisons -measurements vs simulations, mismatch oscillations, negative rotation angles, etc.)
Experimental and numerical simulation results of the space charge dominated magnetized electron beam
Experimental method
- Pulse energy vs extracted charge-for different magnetizations
- Space charge current limitation dependence on gun high voltage-for different magnetizations
- Space charge current limitation dependence on pulse width-for different magnetizations
- Space charge current limitation dependence on laser spot size-for different magnetizations
GPT simulations
- Conclusions (Comparison-measurements and simulations)
Redesigning and performance of the photogun
- Existing electrostatic design
- Modified electrostatic design
- Polishing and gun assembly
- High voltage conditioning