UITF Notes
Jump to navigation
Jump to search
Opportunistic tests and long-term ideas off the top of my head
- Make sure we know which peak is which in the harp scans (make beam spot asymmetric and compare with viewer).
- Readjust buncher amplitude by minimizing p spread on 703?
- Measure p spread on 703
- Float gun-energy beam to 703 to verify MDLM601 calibration. Not sure if possible, but worth trying. Detune both cavities, use BPMs liberally.
- Have the intermittent RF instabilities fixed
- Measure how much juice the BPMs need for reliable positions, particularly in the keV region
- Is there anything we can learn from the BPMs / correctors to supplement the gun kick study at CEBAF?
- Implement QE tool per Joe's request. Got shopping list from Michele
- It would be nice to have an extra corrector before the booster to get a nicer axis through both cavities. Prefer the duct-tape variety to nothing at all
- Permanently incorporate prep chamber stuff into EPICS
- stalk heater PS, temperature readback, ion pump current, anode current. Consider protection logic to disable heater if pressure or temp gets too high. Add oven timer. It should automagically post a completion notice to UITFLOG.
- maybe also an EPICS-switchable DC voltage for the auxiliary laser diode (replaces manual "beam shutter")?
- have a second PS for the dispenser; could be remote-controlled or not, don't really care... we can't automate the whole process anyway because of the manual valve
Preparation for HKDL
- The keV emittance can be measured at 501 provided intrinsic energy spread is negligible (buncher off).
- qsUtility lacks harps to directly measure the optical functions prior to M601, especially directly before and after the booster. Need to measure them at M601 for a few suitable beam energies and backpropagate to M401 in preparation for simulations of the HKDL optics.