Absolute Beam Energy

From Ciswikidb
Revision as of 12:38, 5 August 2013 by Suleiman (talk | contribs) (Created page with "==Summary Table== ====Table 1 <ref name="Dowell"/> ==== Properties of metal photocathodes. {| class="wikitable" |- ! Metal Cathodes ! Wavelength & Energy: ''λ<sub>opt</sub>''...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Summary Table

Table 1 <ref name="Dowell"/>

Properties of metal photocathodes.

Metal Cathodes Wavelength & Energy: λopt (nm), ℏω (eV) Quantum Efficiency (electrons per photon) Vacuum for 1000h operation (Torr) Work Function, φw (eV) Thermal Emittance (microns / mm(rms)) Eq. (1) Thermal Emittance (microns / mm(rms)) Expt.
Bare Metal
Cu 250, 4.96 1.4 x 10-4 10-9 4.6 <ref name="Sommer1"/> 0.5 1.0 ± 0.1 <ref name="Graves"/>
1.2 ± 0.2 <ref name="Schmerge"/>
0.9 ± 0.05 <ref name="Ding"/>
Mg 266, 4.66 6.4 x 10-4 10-10 3.6 <ref name="Michaelides"/> 0.8 0.4 ± 0.1 <ref name="Michaelides"/>
Pb 250 , 4.96 6.9 x 10-4 10-9 4.0 <ref name="Sommer1"/> 0.8 ?
Nb 250 , 4.96 ~2 x 10-5 10-10 4.38 <ref name="Sommer1"/> 0.6 ?
Coated Metal
CsBr:Cu 250 , 4.96 7 x 10-3 10-9 ~2.5 ? ?
CsBr:Nb 250 , 4.96 7 x 10-3 10-9 ~2.5 ? ?

The thermal emittances are computed using the listed photon and work function energies in Eq. (1) and express the thermal emittance as the normalized rms emittance in microns per laser size in mm. The known experimental emittances are given with references.

Table 2 <ref name="Dowell"/>

Properites of semiconductor cathodes.

Cathode Type Cathode Typical Wavelength & Energy, λopt (nm), (eV) Quantum Efficiency (electrons per photon) Vacuum for 1000 h (Torr) Gap Energy + Electron Affinity, EG+EA (eV) Thermal Emittance (microns / mm(rms)) Eq. (2) Thermal Emittance (microns / mm(rms)) Expt.
PEA: mono-alkali Cs2Te 211, 5.88 0.1 10-9 3.5 <ref name="Sommer2"/> 1.2 0.5 ± 0.1 <ref name="Sertore"/>
262, 4.70 - - " 0.9 0.7 ± 0.1 <ref name="Sertore"/>
262, 4.73 - - " 0.9 1.2 ± 0.1 <ref name="Miltchev"/>
Cs3Sb 432, 2.87 0.15 ? 1.6 + 0.45 <ref name="Sommer2"/> 0.7 ?
K3Sb 400, 3.10 0.07 ? 1.1 + 1.6 <ref name="Sommer2"/> 0.5 ?
Na3 330, 3.76 0.02 ? 1.1 + 1.6 <ref name="Sommer2"/> 0.4 ?
Li3Sb 295, 4.20 0.0001 ? ? ? ?
PEA: multi-alkali Na2KSb 330, 3.76 0.1 10-10 1 + 1 <ref name="Sommer2"/> 1.1 ?
(Cs)Na3KSb 390, 3.18 0.2 10-10 1 + 0.55 <ref name="Sommer2"/> 1.5 ?
K2CsSb 543, 2.28 0.1 10-10 1+1.1 <ref name="Sommer2"/> 0.4 ?
532 0.56 ± 0.03 <ref name="Bazarov3"/>
K2CsSb(O) 543, 2.28 0.1 10-10 1 + <1.1 <ref name="Sommer2"/> ~0.4 ?
NEA GaAs(Cs,F) 532, 2.33 0.1 ? 1.4 ± 0.1 <ref name="Sommer2"/> 0.8 0.44 ± 0.01 <ref name="Bazarov1"/>
860, 1.44 0.1 ? 0.2 0.22 ± 0.01 <ref name="Bazarov1"/>
GaN(Cs) 260, 4.77 0.1 ? 1.96 + ? <ref name="Bazarov1"/> 1.35 1.35 ± 0.1 <ref name="Bazarov2"/>
GaAs(1-x)Px x~0.45 (Cs,F) 532, 2.33 0.1 ? 1.96 + ? <ref name="Bazarov1"/> 0.49 0.44 ± 0.1 <ref name="Bazarov1"/>
S-1 Ag-O-Cs 900, 1.38 0.01 ? 0.7 <ref name="Sommer2"/> 0.7 ?

The thermal emittances are computed using the listed photon, gap and electron affinity energies in Eq. (2) and express the thermal emittance as the normalized rms emittance in microns per rms laser size in mm.