Difference between revisions of "Ghost Beam Studies"

From Ciswikidb
Jump to: navigation, search
Line 7: Line 7:
 
*<span style="color:#4B0082"> Indigo </span>
 
*<span style="color:#4B0082"> Indigo </span>
  
==Current Explanation==
+
==Current Explanation and Observations==
 
===Color Legend===
 
===Color Legend===
 
The following is the currently accepted theory on the formation of the observed "Ghost Beam". To organize the explanation by what has been proven/shown to be true, the explanation text is color coded based on theoretical predictions, simulations, and experimental data/observations:
 
The following is the currently accepted theory on the formation of the observed "Ghost Beam". To organize the explanation by what has been proven/shown to be true, the explanation text is color coded based on theoretical predictions, simulations, and experimental data/observations:
Line 19: Line 19:
  
 
===Explanation===
 
===Explanation===
<span style="color:#B22222"> At GTS, electrons in a real electron beam can ionize residual gas, resulting in ions and secondary electrons</span>. <span style="color:#FF6347"> After the real electron beam is turned off, ions and secondary electrons can be trapped in various places in the accelerator due to the magnetic mirror effect</span>. <span style="color:#FF6347"> The three main places the ions and secondary electrons can be trapped are between the anode and magnetizing solenoid and within the first two solenoid lenses</span>. <span style="color:#B22222"> Eventually, the ions and secondary electrons recombine and emit light, some of which is incident on the photocathode, producing a "ghost beam" that we see on the viewers</span>. <span style="color:#0000FF"> Although the ghost beam has been observed to last for many hours </span>, <span style="color:#FFA500"> it cannot be self-sustaining in this manner (i.e. through photoemission from recombination light)</span>; <span style="color:#B22222"> there must be either a direct or an indirect source of ions or electrons to sustain the ghost beam</span>
+
<span style="color:#B22222"> At GTS, electrons in a real electron beam can ionize residual gas, resulting in ions and secondary electrons</span>. <span style="color:#FF6347"> After the real electron beam is turned off, ions and secondary electrons can be trapped in various places in the accelerator due to the magnetic mirror effect</span>. <span style="color:#FF6347"> The three main places the ions and secondary electrons can be trapped are between the anode and magnetizing solenoid and within the first two solenoid lenses</span>. <span style="color:#B22222"> Eventually, the ions and secondary electrons recombine and emit light, some of which is incident on the photocathode, producing a "ghost beam" that we see on the viewers</span>.
  
===Observations===
+
<span style="color:#0000FF"> Although the ghost beam has been observed to last for many hours </span>, <span style="color:#FFA500"> it is not self-sustaining (i.e. through photoemission from recombination light from trapped ions/electrons)</span>; <span style="color:#B22222"> there must be either a direct or an indirect source of ions or electrons to sustain the ghost beam for a long period of time</span>. <span style="color:#B22222"> One possibility is that ions produced close to the photocathode during the real electron beam can "scrub" the photocathode due to back-bombardment, deteriorating its surface oxygen layer and lowering its work function</span>. <span style="color:#B22222"> As a result, field emission from the photocathode is possible due to a high field gradient within the cathode-anode gap once the real electron beam is off</span>. <span style="color:#B22222">These electrons, along with electrons due to recombination light, may make up the ghost beam that we see on the viewers</span>. <span style="color:#B22222">While the real electron beam is off, residual oxygen molecules can adsorb to the photocathode increasing its work function</span>. <span style="color:#B22222">In order to keep the work function of the photocathode low and keep emitting electrons through field emission, it may be that the field emitted electrons ionize more residual gas molecules, which then bombard the photocathode, releasing adsorbed oxygen</span>. <span style="color:#B22222"> Another possibility is ions and electrons that are trapped between the anode and magnetizing solenoid can tunnel through the anode potential (due to the large difference between the absolute values of the cathode and anode potentials) and strike the photocathode</span>.
 +
 
 +
===Other Observations===
  
 
<span style="color:#4B0082"> The ghost beam is made of electrons that originate from the photocathode. We know this due to how the ghost beam steers with corrector magnets upstream of the viewers</span>.  <span style="color:#0000FF"> The higher the vacuum levels during the prior electron beam run, the more intense the ghost beam is on the viewers </span>.
 
<span style="color:#4B0082"> The ghost beam is made of electrons that originate from the photocathode. We know this due to how the ghost beam steers with corrector magnets upstream of the viewers</span>.  <span style="color:#0000FF"> The higher the vacuum levels during the prior electron beam run, the more intense the ghost beam is on the viewers </span>.

Revision as of 11:51, 6 March 2019

Text Color Tests

  • FireBrick
  • Tomato
  • Orange (yellow)
  • Green
  • Blue
  • Indigo

Current Explanation and Observations

Color Legend

The following is the currently accepted theory on the formation of the observed "Ghost Beam". To organize the explanation by what has been proven/shown to be true, the explanation text is color coded based on theoretical predictions, simulations, and experimental data/observations:

  1. Theoretically predicted, but not yet shown in simulations or in experiment
  2. Observed in simulation, but not yet explained in theory or shown in experiment
  3. Observed in experiments, but not yet explained in theory or in simulation
  4. Theoretically predicted and shown in simulations, but has not yet been observed experimentally
  5. Observed in simulation and experiment, but has not yet been explained theoretically
  6. Theoretically predicted and observed in experiment, but has not yet been shown in simulations
  7. Theoretically predicted, shown in simulations, and observed in experiment

Explanation

At GTS, electrons in a real electron beam can ionize residual gas, resulting in ions and secondary electrons. After the real electron beam is turned off, ions and secondary electrons can be trapped in various places in the accelerator due to the magnetic mirror effect. The three main places the ions and secondary electrons can be trapped are between the anode and magnetizing solenoid and within the first two solenoid lenses. Eventually, the ions and secondary electrons recombine and emit light, some of which is incident on the photocathode, producing a "ghost beam" that we see on the viewers.

Although the ghost beam has been observed to last for many hours , it is not self-sustaining (i.e. through photoemission from recombination light from trapped ions/electrons); there must be either a direct or an indirect source of ions or electrons to sustain the ghost beam for a long period of time. One possibility is that ions produced close to the photocathode during the real electron beam can "scrub" the photocathode due to back-bombardment, deteriorating its surface oxygen layer and lowering its work function. As a result, field emission from the photocathode is possible due to a high field gradient within the cathode-anode gap once the real electron beam is off. These electrons, along with electrons due to recombination light, may make up the ghost beam that we see on the viewers. While the real electron beam is off, residual oxygen molecules can adsorb to the photocathode increasing its work function. In order to keep the work function of the photocathode low and keep emitting electrons through field emission, it may be that the field emitted electrons ionize more residual gas molecules, which then bombard the photocathode, releasing adsorbed oxygen. Another possibility is ions and electrons that are trapped between the anode and magnetizing solenoid can tunnel through the anode potential (due to the large difference between the absolute values of the cathode and anode potentials) and strike the photocathode.

Other Observations

The ghost beam is made of electrons that originate from the photocathode. We know this due to how the ghost beam steers with corrector magnets upstream of the viewers. The higher the vacuum levels during the prior electron beam run, the more intense the ghost beam is on the viewers .